Semantics-Aware Scheduling Policies
for Synchronization Determinism

Qi Zhao
Department of Computer Science
North Carolina State University
qzhao6@ncsu.edu

Abstract

A common task for all deterministic multithreading (DMT)
systems is to enforce synchronization determinism. How-
ever, synchronization determinism has not been the focus of
existing DMT research. Instead, most DMT systems focused
on how to order data races remained after synchronization
determinism is enforced. Consequently, existing scheduling
policies for synchronization determinism all have limitations.
They may either require performance annotations to achieve
good performance or fail to provide schedule stability.

In this paper, we argue that synchronization determin-
ism is more fundamental to DMT systems than existing re-
search suggests and propose efficient and effective sched-
uling policies. Our key insight is that synchronization op-
erations actually encode programmers’ intention on how
inter-thread communication should be done and can be used
as hints while scheduling synchronization operations. Based
on this insight, we have built QITHREAD, a synchronization-
determinism system with semantics-aware scheduling poli-
cies. Results of a diverse set of 108 programs show that
QITHREAD is able to achieve comparable low overhead as
state-of-the-art synchronization-determinism systems with-
out the limitations associated with them.

CCS Concepts «Software and its engineering — Sched-
uling; Synchronization; Multithreading; Software perfor-
mance; Software reliability; « Theory of computation —

Program semantics; « Computing methodologies — Par-
allel computing methodologies.

Keywords synchronization determinism, synchronization
scheduling, semantics-aware policies, deterministic multi-
threading, stable multithreading

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6225-2/19/02...$15.00
https://doi.org/10.1145/3293883.3295731

Zhengyi Qiu
Department of Computer Science
North Carolina State University
zgiu2@ncsu.edu

242

Guoliang Jin
Department of Computer Science
North Carolina State University
guoliang_jin@ncsu.edu

1 Introduction

Multithreaded programs are now a necessity to fully utilize
the computing power of multi-core processors. Unlike se-
quential ones, multithreaded programs execute nondetermin-
istically, as they can follow different schedules and produce
different output even if they are given the same exact input.
Nondeterminism makes debugging difficult, as developers
may have to reproduce the exact buggy schedule from a vast
number of possible ones. Nondeterminism also complicates
testing and deployment, as it is difficult, if not impossible,
for in-house testing to cover all schedules that are feasible
after in-field deployment.

To address the nondeterminism issue of multithreaded pro-
grams, there has been a stream of research into deterministic
multithreading (DMT) systems. By enforcing the same sched-
ule for the same input, DMT systems eliminate nondeter-
minism from multithreaded programs. These DMT systems
greatly simplify debugging, testing, deployment, replication,
and record-replay of multithreaded programs [18, 21, 25].

A common task for all DMT systems is to enforce syn-
chronization determinism under which the order of synchro-
nization operations is deterministic. During the process of
adding synchronization operations, programmers usually
strive to exclude only buggy schedules and retain as many
non-buggy schedules as possible to maximize runtime perfor-
mance. DMT systems view synchronization from a different
angle, and they essentially consider synchronization as a
form of nondeterministic inter-thread communication that
programmers intend to carry out. Due to the nondeterminis-
tic nature of synchronization, DMT systems all deterministi-
cally schedule synchronization operations.

All existing synchronization-determinism techniques can
be considered as a combination of the same turn-based mech-
anism and one of two scheduling policies: round-robin or
logical-clock-based [49]. The turn-based mechanism ensures
that (1) at any given time only one thread can have the turn
and (2) a thread can execute a synchronization operation
only if the thread has the turn. The scheduling policies de-
cide (1) when a thread can get the turn and (2) which thread
should get the next turn.

While the mechanism is standard and itself has little-to-
none overhead [54], the policies are far from perfect, and
they each have their own limitations. The round-robin policy
allows threads to execute synchronization operations in a

https://doi.org/10.1145/3293883.3295731
https://www.acm.org/publications/policies/artifact-review-badging/#replicated
https://www.acm.org/publications/policies/artifact-review-badging/#available
https://www.acm.org/publications/policies/artifact-review-badging/#reusable

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

round-robin fashion, and it works well only if threads per-
form synchronization operations at the same rate. To achieve
a good performance in practice, PARROT [26], the state-of-
the-art synchronization-determinism system, has shown that
some program annotations are necessary. The logical-clock-
based policy counts the numbers of instructions different
threads have executed as logical clocks, and it obtains a de-
terministic total order by allowing the thread with the global
minimum logical clock to execute a synchronization opera-
tion. While this policy achieves good performance without
program annotations, the schedules generated by this policy
for similar inputs may differ significantly, i.e., not stable. It
is also not trivial to come up with a well-balanced logical
clock that can accurately reflect the physical time, and large
slowdowns can still be observed.

Despite the fact that synchronization determinism is a
common component for all DMT systems and the limita-
tions mentioned above, synchronization determinism has
not been the focus of existing DMT systems research. This
is because systems enforcing synchronization determinism
alone [26, 49] only guarantee determinism for race-free pro-
grams, and such systems are commonly referred to as weak
determinism systems. To guarantee determinism even for
programs with data races, some other DMT systems [17, 27—
30, 34, 42, 43, 45, 46] further enforce memory-access deter-
minism that the order of shared memory accesses is also
deterministic, and they are commonly referred to as strong
determinism systems. Currently, there are more strong de-
terminism systems than weak determinism systems. As en-
forcing memory-access determinism usually introduces a
large performance overhead, much research effort has been
devoted to improving the efficiency by exploring different de-
terministic multi-core architectures [29, 30, 34] and memory
consistency models [17, 29, 30, 43, 45, 46].

However, we argue that the importance of synchronization
determinism is overlooked, and results from several recent
works suggest that synchronization determinism is just as,
if not more, important as memory-access determinism.

e After synchronization determinism is enforced, the
program interleaving space is more constrained, and
this can significantly reduce the number of remaining
races. For instance, Peregrine [28] reported at most 10
races in millions of shared memory accesses within
an execution after synchronization determinism is en-
forced. However, the overhead of enforcing memory-
access determinism remains the same regardless of the
number of races.

o The state-of-the-art synchronization-determinism sys-
tem, PARROT [26], has shown that it constraints the
interleaving space to the extent that a model checker,
dBug [56], can thoroughly check the remaining sched-
ules after synchronization determinism is enforced.

e Even if strong determinism is really desired, recent
work [43, 45, 46] has demonstrated that enforcing

243

Qi Zhao, Zhengyi Qiu, and Guoliang Jin

memory-access determinism does not require extra
program serialization on top of the serialization caused
by synchronization determinism. As a result, one can
consider synchronization determinism and memory-
access determinism as two orthogonal tasks, and ad-
vancements in synchronization determinism can di-
rectly benefit strong determinism systems.

In this paper, we propose scheduling policies that are effi-
cient, stable, and require no performance annotations. Our
key insight is that synchronization operations actually en-
code programmers’ intention on how inter-thread communi-
cation should be done and can be used as hints to better align
threads while scheduling. For example, considering a pro-
gram in which one thread wakes up multiple other threads
in a loop and the threads to be waken up share a similar code
structure, scheduling all the wake-up operations as a whole
can help balance synchronization across multiple threads.

Based on this insight, we have built QITHREAD', a runtime
synchronization-determinism system with semantics-aware
scheduling policies. We use the round-robin policy as our
base policy, and we then apply semantics-aware scheduling
policies on top of it to help mitigate the limitations of the
round-robin policy without performance annotations. Re-
sults of a diverse set of 108 programs show that QITHREAD is
able to achieve comparable low overhead as state-of-the-art
DMT systems without the limitations associated with them.

The primary contributions of this paper are:

o To the best of our knowledge, we are the first to (1) elab-
orate the importance of synchronization determinism
and (2) propose new scheduling policies that leverage
the semantics of synchronization operations to address
the limitations of existing policies.

We prototype our approach in QITHREAD, consisting

of a runtime library as a drop-in replacement library

for pthreads and a user-space scheduler.

e We evaluate our prototype on a diverse set of 108 real-
world programs, and our results show that QITHREAD
is able to achieve performance and scalability com-
parable to those of state-of-the-art synchronization-
determinism systems without their limitations.

2 Limitations of Existing Policies

There are different sources that can lead to nondeterminism
during the execution of multithreaded programs, and they
can be attributed to internal factors and external factors.
Internal factors are inherited from nondeterministic inter-
thread communication, which manifests as (1) nondetermin-
istic orders of synchronization operations and (2) races on

101 in QITHREAD is the Hanyu Pinyin, which is one type of romanization,
of the Chinese character “” with a meaning of aligned and balanced.

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

producer

consumer 1 consumer 2

L8: lock(&m) returns

L8: lock(&m) blocks

L4: create()

L16: thread_begin()

L4: create()

L19: lock(&m)
L16: thread_begin()

L8: lock(&m) blocks

L21:wait(&cv, &m) blocks
L19: lock (&m)
L21:wait(&cv, &m) blocks

L8: lock(&m) returns
L10: unlock (&m)
L11: signal(&cv)

L21:wait(&cv, &m) returns

L8: lock(&m) blocks

L23: unlock (&m)

L25: compress()
L19: lock(&m) blocks

L10: unlock (&m)

L19: lock(&m) returns

L11: signal(&cv)

L23: unlock (&m)
L25: compress()
L19: lock(&m) blocks

L21:wait(&cv, &m) returns

L21:wait(&cv, &m) blocks

QITHREAD
1 int producer(int argc, char xargv[]){
2 PR
3 for (i = 0; i<nthreads; ++i) Turn
4 pthread_create(..., consumer, ...); 1
5 A 2
6 for (i = 0; i<nblocks;++i){ 3
7 char xblock = read_block(i); 4
8 pthread_mutex_lock (&m); 5
9 enqueue (q, block); 6
10 pthread_mutex_unlock (&m); 7
11 pthread_cond_signal (&cv); g
12 } 10
13 - 1
43 12
15 13
16 void *consumer (void =*arg) { 14
17 S 15
18 while (1) { 16
19 pthread_mutex_lock (&m); 17
20 while (empty(q)) 18
21 pthread_cond_wait (&cv, &m); ;g
22 char xblock = dequeue(q); 21
23 pthread_mutex_unlock (&m); 22
24 R 23
25 compress (block); 24
26 } 25
27
28}

(a) Simplified pbzip2 code

(b) The first 25 synchronization operations and the compress functions

Figure 1. Simplified pbzip2 program and the synchronization operations scheduled in the first 25 turns

shared program variables [32, 47] and shared library re-
sources [17, 49]. External factors include (1) program in-
puts concerning both data and timing and (2) nondetermin-
ism in the execution environment, which can be in com-
pilers, libraries, operating systems, and hardware. Depend-
ing on what sources a DMT system eliminates, different
DMT systems have different focuses and employ different
determinism-enforcement strategies.

While there are DMT systems focusing on external factors,
we focus on DMT systems that eliminate internal nondeter-
minism. As argued in Section 1, synchronization determin-
ism is important for all DMT systems eliminating internal
nondeterminism. Next, we use an example to illustrate the
limitations of existing scheduling policies for synchroniza-
tion determinism.

An Example. Figure 1a shows a code snippet simplified
from the pbzip2 application, which is a parallel compres-
sion/decompression utility program. It uses the common
producer-consumer paradigm, where the main function cre-
ates multiple consumer threads using the consumer function
as the start routine and then acts as the producer itself. The
producer reads blocks of data from the input file, and multi-
ple consumers compress them in parallel. After the producer
thread reads a data block, it calls pthread_mutex_lock on
a shared mutex, enqueues the data block, releases the shared
mutex, and finally wakes up a consumer thread by calling

244

pthread_cond_signal. The consumer thread being woken
up first calls pthread_mutex_lock and then checks if the
data-block queue has data to work on. If not, it would call
pthread_cond_wait to wait for the data to be ready. Other-
wise, the consumer threads dequeue one data block and work
on it. Usually, the compress function call in the consumer
threads takes much longer than the call to read_block(i)
in the producer thread.

The Limitations of the Round-Robin Policy. All DMT
systems currently use the same turn-based mechanism to
enforce synchronization determinism, and they either use
round-robin or logical clocks to pass the turn around threads.
With the round-robin policy, all threads take turns to execute
synchronization operations. The waiting time depends on the
structure of program synchronization. When the numbers
and frequency of synchronization operations are balanced
across all threads, the waiting time can be minimized and pro-
gram execution can achieve a good performance. Otherwise,
the waiting time can be long, and the program execution can
be serialized in the worst case.

Figure 1b shows the resulting schedule with the round-
robin policy if we let the producer thread create two con-
sumer threads with the simplified code shown in Figure 1a.
Each row shows the synchronization operation executed by
the running thread that has the turn, and each cell contains
the line number prefixed with ‘L’ as in Figure la and the

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

abbreviated synchronization name. If a synchronization op-
eration gets blocked, it will return only if it gets the turn
again after being woken up. The function thread_begin is
not called explicitly by the program, but it is usually added
by DMT systems to ensure deterministic initialization of data
structures related to child threads. For clarity, Figure 1b does
not show synchronization operations during the initializa-
tion of the producer thread, and it just shows the first 25
turns. From the schedule, we can see the blocks are processed
in a serialized way by the same thread.

PARROT [26] is the state-of-the-art system implementing
round-robin scheduling for synchronization determinism,
and it provides a soft-barrier interface to restore parallelism.
The software barrier performs similarly as a barrier, and it
encourages the scheduler to co-schedule a group of threads
at program points where it is added. For the code shown in
Figure 1a, if one adds a software barrier before calling the
compress function in line 25, the serialization problem will
be solved.

However, these performance hints could require signifi-
cant programmer effort, as the ideal placement for such hints
may not be easy to determine. Moreover, after a developer
inserts soft barriers correctly, they become a part of program
code that needs to be maintained and tested each time the
application is modified, which creates another burden for
the developers. Pegasus [31] can automate the process of
inserting soft barriers by profiling program execution and
analyzing execution logs. However, it requires a repeated
trial-and-error process to finalize the best position to insert
soft barriers.

The Limitations of the Logical-Clock-Based Policy. The
other scheduling policy based on logical clocks is more re-
silient to the synchronization imbalance problem by design,
as it allows a thread to execute synchronization operations
only if the thread has the lowest instruction count. How-
ever, this policy suffers from the instability problem that
minor input or code changes can perturb instruction counts
and subsequently the schedules. It has been reported that
pbzip2 running on top of CorReDET [17], a DMT system
using the logical-clock-based scheduling policy, uses five
different schedules to process eight different files [26]. As
a result, testing one input provides little insight into how
the program and system work on other inputs. Further, this
policy can still have the imbalance problem as instruction
counts may not perfectly reflect the physical time, and large
overhead can also be observed [26].

3 Scheduling Policies and Illustrations

We strive to develop scheduling policies for synchroniza-
tion determinism that can achieve good performance and
schedule stability without programmer intervention.

We use round robin as our base policy due to its stability.
To address the performance slowdown of the round-robin

245

Qi Zhao, Zhengyi Qiu, and Guoliang Jin

policy, we design semantics-aware scheduling policies that
let the scheduler break the vanilla round-robin policy when
it recognizes certain synchronization operations, and the
goal is to achieve better synchronization alignment among
threads with our policies.

We start our design with programs that show significant
performance improvement after applying PARROT soft barri-
ers on top of the vanilla round-robin policy. By comparing
schedules before and after applying PARROT soft barriers, we
come up with patterns of imbalanced schedules and design
semantics-aware policies to compensate these imbalances.
The design process stops when we are able to achieve com-
parable performance as PARROT with soft barriers on most
programs in our evaluation. We end up with five policies,
where each policy is designed by analyzing a very small
number of programs, which is one in some cases. Our evalu-
ation will show that these five policies designed based on a
small number of programs can benefit many other programs.
Below, we describe our policies and elaborate the rationales
behind them.

3.1 BoostBlocked: Prioritizing Blocked Threads

Like typical scheduling policies, we maintain queues for
threads with different states. QITHREAD maintains three
queues: one run queue for running threads, one wait queue for
waiting threads that are blocked while executing some syn-
chronization operations, and one wake-up queue for threads
that were in the wait queue and just being woken up.

This BoostBlocked policy prioritizes threads that were
previously blocked, by putting threads just being woken up
into the high priority wake-up queue and scheduling threads
in the wake-up queue before those in the run queue.

This is based on two rationales: (1) when a resource be-
comes available as being indicated by the unblocking op-
eration, we want to have the resource utilized as soon as
possible, and (2) other threads that share a similar role as the
woken-up thread may have executed more synchronization
operations, prioritizing these previously blocked threads can
help re-balance synchronization in all threads.

3.2 CreateAll: pthread_create Loops Create All

Multithreaded programs usually create multiple child threads
inside a loop, and the pthread_create call is a synchro-
nization operation that needs to be deterministically or-
dered. With a round-robin policy, the thread executing the
pthread_create loop needs to wait for each running thread
to execute one synchronization operation before it can ex-
ecute the next pthread_create call. Depending on what
other threads are doing, there is a high chance that the next
call to pthread_create will be delayed. This will also make
the synchronization operations in child threads be unbal-
anced, as thread created one iteration earlier has executed
one more synchronization operation.

QITHREAD
Parent Thread Child Thread
void parent_main(...) { void child_main(...) {
for (...) . // all computation

pthread_create(..., . // no synchronization

child_main, ...); }

child_main();

Figure 2. A pthread_create loop creates all threads

Figure 2 shows a simplified real-world example, where
the child threads do not explicitly execute any synchroniza-
tion operations, and all the child threads are serialized after
applying the round-robin policy.

This CreateAll policy allows a thread to finish the whole
pthread_create loop if the loop does not contain other
synchronization operations. This does not delay these child
threads much, as the time taken to execute a pthread_create
loop is short. Further, this better balances synchronization
operations among all child threads, and this can balance
child threads and the parent thread, if the parent thread also
invokes the same function as the child threads.

3.3 CSWhole: Critical Sections Scheduled as a
Whole

Critical sections are formed by first acquiring a mutex and
then releasing the mutex. For a mutex with multiple threads
contending for it, a round-robin policy will deterministically
schedule one thread to acquire the mutex, go through all
other threads contending for the mutex and block these
threads, and schedule the thread that acquired the mutex to
release the mutex. After the first thread finishes executing a
critical section, the scheduler deterministically wakes up the
remaining threads in a chained fashion to acquire and release
the mutex. During this process, if there are many threads
contending for the mutex, the overhead of putting threads
into the wait queue and then putting them into the wake-up
queue can be significant, and it can greatly slow down the
program if the critical sections themselves are short.

This CSWhole policy schedules a critical section as a
whole. This policy can greatly improve performance if there
are many threads competing for the same mutex and the
lengths of critical sections are short. When the critical sec-
tions become longer, the benefit of the CSWhole policy di-
minishes, but no extra overhead will be introduced as other
threads cannot proceed anyway because of the mutex.

However, if threads are acquiring different mutexes, the
CSWhole policy can unnecessarily serialize critical sections
and may lead to poor performance. As we will see later, pro-
grams used in our evaluation do not run into this situation.
Two characteristics of our programs make the negative im-
pact of CSWhole small: (1) critical sections are often short,

246

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

The Wait Thread

sem_wait(s);

Multiple Post Threads

pthread_mutex_lock (&m);

n--;

if (n @) // The last thread posts
sem_post(s);

pthread_mutex_unlock (&m);

Figure 3. Branched unblocking

and (2) there is some computation between critical sections.
As a result, each thread can finish executing the critical sec-
tion while other threads are doing computation, under which
case CSWhole does not introduce much delay.

3.4 WakeAMAP: Wake Up as Many as Possible

To enforce order relationships among threads, program-
mers usually let some threads wait on condition variables
or semaphores and let some other threads wake up these
blocked threads. When there are multiple threads to be wo-
ken up, the thread waking up others and the blocked threads
usually have very different code structures and workloads. If
we schedule these threads in a round-robin fashion, the un-
blocking side may need to wait for those threads just woken
up to execute synchronization operations.

Figure 1a is a real-world example where the program gets
serialized because of the way how the unblocking side, which
is the producer, gets scheduled with the round-robin policy.
Note in this case, even if we apply the CreateAll policy, the
program execution will be similarly serialized as in Figure 1b.

This WakeAMAP policy will let a thread executing an un-
blocking operation continue its execution until there are no
more threads to be woken up on the same condition variable
or semaphore or the unblocking thread itself gets blocked.
The WakeAMAP policy can help resolve the serialization
problem shown in Figure 1. This policy reduces the possibil-
ity of synchronization imbalance, as these woken-up threads
usually have a similar code structure. Although the threads
that get woken up need to wait for the unblocking thread to
finish the unblocking loop to do any synchronization, this
may not be a problem as the unblocking side usually does not
do time-consuming computation before being descheduled.
Further, our BoostBlocked policy can help compensate the
waiting time by prioritizing threads just being woken up.

3.5 BranchedWake: Branched Unblocking

It is common to have synchronization operations in branches,
and this is one source of synchronization imbalance, as not
all threads are going to execute these synchronization opera-
tions. Figure 3 shows a simplified real-world example, where
the wait thread is blocked on sem_wait and the last thread
decrementing n wakes up the wait thread. With round-robin
scheduling, the last thread sees n being 0 cannot immediately
execute sem_post, as it needs to wait for other threads to

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

synchronization network | timeout

QITHREAD

1 . . . 1
i Deterministic user-space scheduler
1 1

(ON)

Figure 4. The components of PARROT system architecture
leveraged by QITHREAD

execute a synchronization operation. This delays the wait
thread unnecessarily.

This BranchedWake policy instruments the program with
a dummy synchronization operation on branches where an
unblocking operation is skipped. With the dummy synchro-
nization operation, these multiple potential post threads
become re-aligned.

In this particular example, the BoostBlocked policy also
helps further balance threads, as it allows the wait thread
to quickly return from the sem_wait. If the wait thread and
these post threads are performing the same task later, this
helps balance all these threads.

4 Implementation

We implement our synchronization-aware scheduling poli-
cies in QITHREAD, and the implementation is based on PARr-
ROT. In this section, we first present some necessary back-
ground of PARROT, focusing on its architecture and interface
that are leveraged by QITHREAD, and then we describe how
we implement QITHREAD on top of the PARROT infrastruc-
ture. Although we implement our scheduling policies in a
software DMT system, the policies can also be applied to
hardware DMT systems.

4.1 PARROT Architecture and Interface

Figure 4 shows the components of PARROT system archi-
tecture leveraged by QITHREAD, including a deterministic
user-space scheduler and a set of wrapper functions for in-
tercepting pthreads, network, and timeout operations. The

247

Qi Zhao, Zhengyi Qiu, and Guoliang Jin

Table 1. Primitives for manipulating scheduler queues

void get_turn(void);

void put_turn(void);

int wait(void *addr, int timeout);
void signal(void *addr);

void broadcast(void *addr);

user-space scheduler only schedules synchronization oper-
ations and delegates everything else to the OS scheduler.
The wrapper functions interpose function calls to dynami-
cally loaded libraries via LD_PRELOAD, “trap” the calls into
the user-space scheduler where different scheduling policies
can be implemented, and then delegate the actual implemen-
tation to pthreads or the OS. These design decisions greatly
simplify the implementation and deployment of PARROT and
QITHREAD. PARROT also provides an implementation of per-
formance hints that QITHREAD gets rid of.

The PARROT user-space scheduler employs the round-
robin policy and maintains two queues: one run queue for
running threads and one wait queue for waiting threads. To
achieve round-robin scheduling, PARROT allows a thread to
execute a synchronization operation only if the thread is the
head of the run queue. After successfully executing the syn-
chronization operation, the queues are updated accordingly.

To manipulate the queues and schedule synchronization
operations, the scheduler provides an interface, and the
primitives used by QITHREAD are shown in Table 1. The
get_turn function waits until the calling thread gets the
“turn” to execute synchronization operations. The put_turn
function gives up the turn after the calling thread has ex-
ecuted some synchronization operations. The remaining
three functions, wait, signal, and broadcast, all require
the calling thread to have the turn. The wait function is sim-
ilar to pthread_cond_timedwait, and it blocks the calling
thread and moves it to the tail of the wait queue. The thread
is moved out of the wait queue when (1) another thread
wakes it up via signal or broadcast on the same addr or
(2) the timeout specified in the wait call has expired. The
return value of wait indicates how the thread was woken
up. The signal(void *addr) function wakes up the first
thread waiting on addr. The broadcast (void *addr) func-
tion wakes up all threads waiting on addr in order. Since
QI1THREAD and PARROT have different scheduler internals,
the implementations for these primitives are not exactly the
same while the interface remains unchanged.

Note that the timeout in the wait function is a relative
logical time that counts the number of turns executed since
the beginning of current execution, and PARROT makes time-
outs deterministic by proportionally converting them to a
logical timeout. A wait(NULL, timeout) call is a logical
sleep, and a wait(addr, @) call never times out. QITHREAD

QITHREAD

int lock_wrapper(pthread_mutex_t *m) {
scheduler.get_turn();
while(pthread_mutex_trylock(m))
scheduler.wait(m, 0);
if(CSWhole_policy_not_on())
scheduler.put_turn();
return 0;
}
int unlock_wrapper(pthread_mutex_t *m) {
if(CSWhole_policy_not_on())
scheduler.get_turn();
pthread_mutex_unlock(m);
scheduler.signal(m);
scheduler.put_turn();
return 0;

Figure 5. Wrappers for mutex lock and unlock. The code
for handling nested critical sections is not included. Error
handling code is omitted.

does not change how these timeout operations, as well as
network operations, are implemented in PARROT. We omit
the details here, and please refer to the PARROT paper [26]
for detailed description of their implementation.

4.2 QITHREAD Implementation

Q1THREAD follows the architecture of PARROT, and it has
38 synchronization wrappers in total. It handles thread cre-
ation, start, exit, and join. It also handles all synchronization
operations on mutexes, read-write locks, condition variables,
semaphores, and barriers. All wrappers execute a synchro-
nization operation only if the calling thread has the turn.
Since at most one wrapper can have the turn at any time, it
ensures a total order of all synchronization operations.

To implement our proposed semantics-aware schedul-
ing policies in QITHREAD, the BoostBlocked policy requires
changes to the queue-manipulation primitives, the CSWhole
and WakeAMAP policies are implemented in synchroniza-
tion wrappers, and the CreateAll and BranchedWake policies
require some static analysis.

4.2.1 BoostBlocked Implementation

To implement the priority queue for threads just being wo-
ken up, QITHREAD maintains three queues, a run queue, a
wait queue, and a wake-up queue. With these three queues,
the primitives in Table 1 are implemented as follows. The
get_turn function lets the calling thread get the “turn” and
execute synchronization operations if the calling thread is
(1) the head of the wake-up queue or (2) the head of the
run queue when the wake-up queue is empty. The put_turn
function puts the calling thread to the tail of the run queue,
regardless of whether it was previously in the wake-up queue
or the run queue. The wait function remains the same as
described in Section 4.1. The signal (void *addr) function
appends the first thread waiting for addr to the wake-up
queue. The broadcast(void *addr) function appends all

248

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

int signal_wrapper(pthread_cond_t xcv) {
scheduler.get_turn();
scheduler.signal(cv);
if (WakeAMAP_policy_is_on ()) {
if (cv_wait_map[cv] > 0)
cv_wait_maplcv]--;
if (cv_wait_maplcv] == 0)
scheduler.put_turn();
3
else
scheduler.put_turn();
3

int wait_wrapper(pthread_cond_t =*cv,
pthread_mutex_t *m) {

scheduler.get_turn();

if (WakeAMAP_policy_is_on ())
cv_wait_map[cv]++;

pthread_mutex_unlock(m);

scheduler.signal(m);

scheduler.wait(cv, 0);

while(pthread_mutex_trylock(m))
scheduler.wait(m, 0);

scheduler.put_turn();

return 0;

Figure 6. Wrappers for condition variable signal and wait.
Error handling code is omitted.

threads waiting for addr to the wake-up queue in the same
order as they were in the wait queue.

4.2.2 CSWhole and WakeAMAP Implementation

Figure 5 shows the simplified pseudo code of the mutex lock
and unlock wrappers. To avoid deadlock, the lock_wrapper
function uses the pthread_mutex_trylock operation, as if
the calling thread is blocked waiting for a lock before giving
up the turn, no other thread can get the turn. To enable
the CSWhole policy, the lock_wrapper function does not
give up the turn before returning and the unlock_wrapper
function does not need to get the turn.

Figure 6 shows the pseudo code of the condition vari-
able signal and wait wrappers. Once the WakeAMAP policy
is turned on, the wrappers count the number of threads
waiting on each condition variable with the map structure
cv_wait_map, signal_wrapper decrements the counter and
gives up the turn until no thread is blocked on the condition
variable, and wait_wrapper increments the counter. To en-
sure the correctness of the wait_wrapper, i.e., (1) there is
no deadlock and (2) the release of the mutex and the wait
on the condition variable are atomic, it is implemented with
the scheduler’s wait which atomically gives up the turn and
blocks the calling thread on the wait queue.

4.2.3 CreateAll and BranchedWake Implementation

To implement the CreateAll and BranchedWake policies, we
need to instrument the programs. Figure 7a shows an exam-
ple of instrumentation for a pthread_create loop. A new

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

for (i=0; i<nTheads; i++) {
if (i+1<nThreads) if (n == 0)
keep_turn(); sem_post(s);
pthread_create(...); else
} dummy_synchronization();
(a) CreateAll (b) BranchedWake
instrumentation instrumentation

Figure 7. Instrumentations for CreateAll and Branched-
Wake

primitive, keep_turn, is used to inform the scheduler not to
give up the turn after executing the next synchronization
operation from the calling thread, and it is involved only if
the thread is going to create more child threads. Figure 7b
shows an example of instrumentation for dummy synchro-
nization. A call to dummy_sync is added on the branch where
an unblocking synchronization operation is skipped, and
this function simply calls get_turn and then put_turn.

Since there are only a small number of places where
pthread_create and unblocking operations on condition
variables and semaphores are invoked, we currently add such
instrumentation manually, and a static analysis can be de-
veloped if manual instrumentation turns out to be infeasible
in some programs.

5 Evaluation

We evaluated QITHREAD with all 108 programs used to evalu-
ate PARROT. This set of programs covers a good range of par-
allel programming models and idioms, and it has 10X more
programs than any other DMT system evaluation. Specifi-
cally, these programs are: 14 benchmarks in SPLASH-2x [3];
nine benchmarks in NPB [10]; 15 benchmarks in PARSEC [4];
14 benchmarks in Phoenix [52], where each algorithm has
two implementations, one using pthreads and the other us-
ing a map-reduce library built on top of pthreads; PBZip2, a
parallel compression/decompression utility [5]; aget, a par-
allel file download utility [1]; pfscan, a parallel file scan-
ner [2]; Berkeley DB, a database library [8]; OpenLDAP, a
lightweight directory access protocol server [11]; MPlayer, a
media encoder, decoder, and player [6]; Redis, a key-value
data store server [12]; 14 image processing utilities using
OpenMP in the ImageMagick software suite [9]; 33 paral-
lel C++ STL algorithm implementations [7] that also use
OpenMP. The use of complete software or benchmark suites
avoids potential biases in the evaluation.

All our experiments were conducted on a machine with
dual Intel Xeon E5-2670 CPUs. Each CPU has eight cores and
16 threads, running at 2.60 GHz. The machine has a total of
32 logical CPUs and 128GB memory, and it is running Linux
kernel version 4.40.

We mimic many settings in PARROT evaluation. For pro-
grams with both a client side and a server side, we run both
endpoints on the same machine. For the five programs that

249

Qi Zhao, Zhengyi Qiu, and Guoliang Jin

use ad hoc synchronization [58], a call of sched_yield is
added to the busy-wait synchronization loops. We also add a
call of set_base_time to programs that use timed pthreads
operations. All programs are compiled with -02. We use the
GNU libgomp to support OpenMP programs. While PARROT
used libgomp included in GCC 4.5.4, we migrate the setup
to the more recent GCC 5.4.0.

Our evaluation focuses on three questions: (1) How does
QITHREAD compare with PARROT on performance? (2) How
helpful are different policies, and what policies should users
enable? (3) How does the performance of QITHREAD vary
with different thread counts?

5.1 Performance

To compare the performance of QITHREAD and PARROT, we
measure the program execution times under QITHREAD and
PARROT and normalize them to the times of nondetermin-
istic execution. We mirrored the setup from how PARROT
evaluated its performance with these programs to get a fair
comparison between QITHREAD and PARROT. For most pro-
grams, we used the same workloads and number of threads
as described in the PARROT paper to compare QITHREAD
and PARROT. One exception is ImageMagick, where PARROT
used a 16k resolution image as an input file to measure their
performance results. We were unable to find that exact same
file. We used an 8k resolution image described in their scala-
bility evaluation and also compared QITHREAD results with
PARROT’s using the 8k image. We omit the detailed workload
description for other programs here.

For PARROT performance, we include both the numbers
reported in the original paper and the numbers measured by
us. For all programs that PARROT applies soft barrier hints
originally, we apply the same hints in the same places in
our own measurement. Some PARROT numbers reported in
the paper are measured with the performance critical sec-
tion (PCS) hints applied to the programs, which allow code
in these performance critical sections to execute nondeter-
ministically, and we measure the PARROT performance both
with and without PCS hints for most of these programs. The
exceptions are programs that use the libgomp library, as
one PCS hint is applied to the library but the relevant syn-
chronization code enclosed in the PCS hint only exists in the
version from GCC 4.5.4 but not in the version from GCC 5.4.0
that we use, and we only measure the PARROT performance
without PCS hints for these programs.

For QITHREAD performance, we turn on the policies de-
scribed in Section 3 in the order of BoostBlocked, CreateAll,
CSWhole, WakeAMAP, and BranchedWake, and measure
the performance under different policy configurations. We
do not try all different possible policy combinations due to
the large size of search space given the program number.
While comparing performance under different configura-
tions, we are particularly interested in coming up with a
default configuration applicable to most programs.

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

QITHREAD

o o
S S oo
™ — o~ o0 (o] f=]
1 %
n
<
&
o
[

%_...................ﬂ

o«

“ RESS==
5 e
n
I
<+
=
~ B
—
o~
=+
=

%)

O

= <

=

Wmun,n,”

s O

o &

g T

g 5

[Siel

0

5 &

& o

g2

a B

A~

9 o

g &

: :

S

1y

r T 1 T T 1
2 o9 oo ®© L ™ =}
j=3 (=} o™~
&=

x264+

vips™

swaptions™
streamcluster
rtview raytrace
freqmine-openmp™
fluidanimate*
ferret™

facesim™

dedup

canneal
bodytrack-openmp™
bodytrack™
blackscholes-openmp ™

blackscholes

ua-1t*
sp-1T
mg-1"
lu-1*
is-17
ft-1*
ep-1™
de-1*
cg-1*
bt-1"

water_spatial
water_nsquared
volrend
raytrace®
radix™
radiosity
ocean_ncp
ocean._cp
lu_ncb

lu_cb

cholesky*

barnes

PARSEC

NPB 3.3.1

SPLASH-2x

montage™
mogrify segment™
mogrify resize™
convert shear™
convert sharpen™

convert paint_effect

1 convert fit™
] convert edge_detect™

J convert draw™

convert charcoal effect™*
convert blur™

compare compose "
compare channel red*

compare ™"

redis

1 mencoder™

J ldap

bdb_bench3n
pfscan*

aget

pbzip2 decompress™*

pbzip2 compress™

word_count-pthread™*

word_count*

J string_match-pthread™®

J string_match™

pca-pthread™

peca™
matrix_multiply-pthread ™
matrix_multiply ™
linear_regression-pthread™*
linear_regression™
kmeans-pthread*

kmeans™

] histogram-pthread™*

] histogram™

ImageMagick

Real World Programs

Phoenix 2

1 unique_copy™

transform

stable_sort™

J sort™

set_union™
set_symmetric_difference*
set_intersection™
set_difference™®

search not_found™

search n_not_found™
replace_if "

random_shuffle™

J partition™

partial_sum*
partial sort™
nth_element™
mismatch™

min_element™

] merge”

max_element™

lexicographical _compare™

J inner_product™

generate ™"

for_each™

] find_not_found*

find_if_not_found™

find first_of not_found*

7 equal™

count_if*

count™

7 adjacent_find not_found™

adjacent_difference™

accumulate™

STL libstdc++-v3

PARROT

«
«

Figure 8. Execution times under QITHREAD and PARROT with nondeterministic execution times normalized to 1.

»

«

»

paper” bars are results from the PARROT paper. “PARROT w/ PCS” bars are our best effort to reproduce PARROT results. “PARROT

»

w/0 PCS” bars are our measured performance with only soft barrier hints inserted but not PCS hints to ensure determinism.

«

»

QITHREAD” bars are the results with all policies enabled. Programs with applicable soft barrier hints are marked with ‘+’, and

5

programs with applicable PCS hints are marked with

250

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

As we will detail in Section 5.2, turning on a policy rarely
hurts program performance in our evaluation, and we use
enabling all policies as the default policy configuration for
QI1THREAD due to its simplicity. The performance numbers
reported in this subsection are measured with this default
all-policy-enabled configuration.

Figure 8 compares the performance of QITHREAD with
PARROT. The height of each bar is normalized to the non-
deterministic execution time. For each program, we report
the PARROT performance presented in the original paper
(PARROT paper), our measured PARROT performance, and
QITHREAD performance (QITHREAD). Our measured PARROT
performance numbers have two versions when PCS hints
are applicable, i.e., one with PCS hints applied (PARROT W/
PCS) and one without (PARROT w/0 PCS), and they are all
measured with applicable soft barrier hints applied. Again,
Q1THREAD performance numbers are measured under the
default configuration with all policies enabled.

We first compare the PARROT paper performance numbers
and our measured PARROT numbers with PCS hints. For 93
programs, we were able to reproduce performance results
within 130% of the numbers reported by the PARROT paper,
72 of which are within 110%. This represents our best effort
to resolve the performance difference, including contacting
the PARROT authors.

We then compare QITHREAD numbers with our measured
PARROT numbers. As QITHREAD always guarantees synchro-
nization determinism, we compare QITHREAD performance
with PARROT performance without PCS. QITHREAD is able
to achieve a comparable performance, i.e., 110% or less, as
our measured PARROT performance without PCS hints for
103 programs. For 30 programs, the QITHREAD execution
times are smaller than 90% of the corresponding PARROT
execution times, which can be considered as non-negligible
speedups. QITHREAD takes more than 110% of the no-PCS
PARROT numbers on five programs, which are radiosity from
SPLASH-2x and blackscholes-openmp, bodytrack-openmp,
vips, and x264 from PARSEC. Among these five programs,
QI1THREAD benefits four of them but not vips, and vips has
the largest slowdown comparing QITHREAD with PARROT.

There are five programs that QITHREAD has an overhead
of more than 400%, i.e., fmm, raytrace, ua, fluidanimate, and
vips. PARROT applied PCS hints to the first four. Although
QITHREAD has better performance than PARROT without PCS
hints, QITHREAD policies are not enough to further improve
the performance. We leave it for future work to develop
policies that can achieve comparable performance as PARROT
with PCS hints.

5.2 Effectiveness of Different Policies

We next report how effective different policies are on im-
proving the performance. As discussed in Section 5.1, we
did not test all combinations of different policies. Rather, we
applied the policies in the order of BoostBlocked, CreateAll,

251

Qi Zhao, Zhengyi Qiu, and Guoliang Jin

CSWhole, WakeAMAP, and BranchedWake, due to the large
search space for 108 programs. We consider a policy as ben-
eficial if it reduces the execution time to be less than 90% of
the time under the previous policy configuration. For the first
policy we apply, we compare its performance with vanilla
round-robin scheduling. To understand how well the default
all-policy-enabled configuration works, we will also report
cases that achieve better performance with some policies
turned off compared with the default configuration.

Among all 108 programs, the BoostBlocked policy bene-
fits 43 programs. After applying CreateAll, 39 programs get
performance improvements. The CSWhole policy benefits
49 programs, 18 of which have already gained some speedup
with BoostBlocked or CreateAll. Although WakeAMAP only
benefits five programs, two of them, i.e., pbzip2 and ferret
in the PARSEC suite, gain very large performance improve-
ments. Specifically, the two pbzip2 tasks, decompression and
compression, get speedups of 300% and almost 1000%, respec-
tively, and ferret gets a speedup of more than 150%. At last,
BranchedWake is able to benefit 20 programs, all of which
utilize the OpenMP library.

Since our scheduling policies are all heuristic-based, ap-
plying a policy can sometimes hurt the performance. We
observed three instances of such cases that resulted in an
increased execution time of more than 10%: the CreateAll
policy increased the overhead of aget from —3.11% to 14.52%
and the overhead of STL partial_sort from —1.9% to 16.38%,
and the WakeAMAP policy increased the overhead of convert
“paint_effect” case in ImageMagick from —7.24% to 3.39%.

No QITHREAD policy is able to improve performance, i.e.,
by more than 10%, for vips from PARSEC. The vips program
maintains an idle queue to hold threads that have finished
their workload and dispatch workload with the producer-
consumer idiom. The WakeAMAP policy is supposed to help
align all consumer threads, just like how it helps the example
in Figure 1a. However, each consumer has a unique condition
variable that the producer uses to wake up the consumer. As
a result, although the loop-contained wake up operation in
the producer can wake up many consumers, the wrappers
in Figure 6 cannot keep track of the number of consumers
to wake up. We envision that the WakeAMAP policy can be
further amplified with more sophisticated static analysis and
instrumentation to benefit the vips program, and we leave
such an extension for future work.

We next compare the best performance we can get under
different policy configurations with the default all-policy-
enabled configuration. The former is able to make one more
program to achieve similar performance, i.e., +10% or less, as
PAarrOT w/0 PCS. This application is x264, which achieved
an overhead of 162% with BoostBlocked turned off, where
the overhead numbers for PARROT and the QITHREAD default
configuration are 242% and 317%, respectively. This further
shows that the all-policy-enabled configuration can work
well in practice as the default.

QITHREAD

5.3 Scalability

We next measure how the performance changes with differ-
ent thread counts, and we report how the overhead varies.

We first randomly selected five programs for scalabil-
ity analysis: barnes from SPLASH-2x, bodytrack from PAR-
SEC, histogram from phoenix, convert “shear” case from
ImageMagick, and pbzip2 decompress. For each program,
we used four different thread counts: 4, 8, 16, and 32. All
these five programs varied within 42% from each program’s
mean overhead across four thread counts. We did the same
measurement with PARROT, and QITHREAD shows smaller
performance variations than PARROT, where PARROT perfor-
mance varies to a maximum of 47%.

We next focused on the 30 programs on which QITHREAD
achieved non-negligible speedup compared with PARROT
with soft barrier hints, and we selected 23 of them for scal-
ability analysis, as we can increase the thread number in
these programs to 32. Compared with 16 or 24 threads that
we used in performance evaluation presented in Section 5.1,
17 of the 23 programs have their overhead increased when
running with QITHREAD, and the other 6 programs enjoy
a reduction in overhead. PARROT also encounters increased
overhead on 17 programs, on 16 of which QITHREAD encoun-
ters overhead increase as well. Among the 16 programs that
both QITHREAD and PARROT encounter increased overhead,
QITHREAD leads to less increase on 12 of them.

Overall, we find that QITHREAD’s performance is robust
to thread-count changes. Comparing with PARROT, most of
the programs we tested are less sensitive to thread-count
changes under QITHREAD.

6 Related Work

Nondeterminism makes it a challenging task to ensure the
reliability of multithreaded programs, as concurrency bugs
only nondeterministically manifest under specific interleav-
ings. Researchers have developed many different tools on
concurrency bug detection [50, 59, 60], diagnosis [14, 15, 38],
and fixing [24, 37, 39-41, 57]. To deterministically repro-
duce concurrency bugs for easier debugging, researchers
have proposed record and replay tools [13, 35, 51], which
log different information under nondeterministic executions
and provide different determinism guarantees while replay-
ing. Orthogonal to record and replay tools, researchers have
also developed many different types of DMT systems that
eliminate nondeterminism from the sources and enforce de-
terministic execution. DMT systems can ease debugging
without recording runtime information, and they also have
usages other than debugging. Below, we focus on related
work about DMT systems that are closest to QITHREAD.
Different DMT systems achieve determinism at different
system levels, including hardware architectures [29, 30, 34,
53], runtime systems [17, 20, 26, 28, 33, 42-46, 49, 55, 61], pro-
gramming languages [22, 23, 48], and operating systems [16,

252

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

19, 36]. QITHREAD enforces synchronization determinism
with a runtime system, and systems at different levels can
complement each other.

Among all runtime DMT systems, Kendo [49] and PAr-
ROT [26] only enforce synchronization determinism. Since
Kendo is logical-clock-based, the schedules generated by
Kendo may not be stable. Both PARROT and QITHREAD use
round robin as their base scheduling policy to ensure sched-
ule stability. To achieve good performance, PARROT proposes
performance hints, while we propose scheduling policies
that are highly related to synchronization semantics.

One group of researchers has specifically analyzed the
sources of nondeterminism while enforcing synchronization
determinism and the cost of the two existing scheduling
policies [54]. While they share the same focus on synchro-
nization determinism as us and their results provide many
insights into synchronization determinism, they do not pro-
pose any solution for performance improvement.

Most existing runtime DMT systems enforce memory-
access determinism to provide strong determinism. The en-
forcement of memory-access determinism and synchroniza-
tion determinism are two orthogonal tasks, and our schedul-
ing policies can be incorporated by strong DMT systems.

7 Conclusion

Deterministic multithreading systems can be useful for the
development and deployment of multithreaded programs.
However, the importance of synchronization determinism
has been overlooked, and existing scheduling policies for
synchronization determinism have limitations. We have pre-
sented QITHREAD, a runtime system that enforces synchro-
nization determinism with scheduling policies that leverage
the semantics of synchronization operations. We evaluated
QITHREAD on a comprehensive set of 108 real-world mul-
tithreaded programs. Our results show QITHREAD is able
to achieve low overhead and good scalability without the
limitations of existing systems.

Acknowledgments

The authors would like to thank our shepherd Vasileios Trig-
onakis and the anonymous reviewers for their valuable feed-
back and helpful suggestions. The authors would also like
to thank Heming Cui for making the PARROT code available
and helping us reproduce some PARROT results.

References

[1] Aget. http://www.enderunix.org/aget/.

[2] pfscan. http://freshmeat.sourceforge.net/projects/pfscan.

[3] SPLASH-2x. http://parsec.cs.princeton.edu/parsec3-doc.htm.

[4] The Princeton application repository for shared-memory computers
(PARSEC). http://parsec.cs.princeton.edu/.

[5] Parallel BZIP2 (PBZIP2). https://launchpad.net/pbzip2.

[6] MPlayer. http://www.mplayerhq.hu/design7/news.html.

[7] STL Parallel Mode. http://gcc.gnu.org/onlinedocs/libstdc++/manual/
parallel_mode.html.

http://www.enderunix.org/aget/
http://freshmeat.sourceforge.net/projects/pfscan
http://parsec.cs.princeton.edu/parsec3-doc.htm
http://parsec.cs.princeton.edu/
https://launchpad.net/pbzip2
http://www.mplayerhq.hu/design7/news.html
http://gcc.gnu.org/onlinedocs/libstdc++/manual/parallel_mode.html
http://gcc.gnu.org/onlinedocs/libstdc++/manual/parallel_mode.html

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

[8] Berkeley DB. http://www.oracle.com/technetwork/database/
database-technologies/berkeleydb/overview/index.html.
[9] ImageMagick. http://www.imagemagick.org/script/index.php.

[10] NASA Parallel Benchmarks. http://www.nas.nasa.gov/publications/
npb.html.

[11] OpenLDAP. http://www.openldap.org/.

[12] Redis. http://redis.io/.

[13] Gautam Altekar and Ion Stoica. 2009. ODR: Output-deterministic
Replay for Multicore Debugging. In Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles (SOSP °09). ACM, New
York, NY, USA, 193-206. https://doi.org/10.1145/1629575.1629594

[14] Joy Arulraj, Po-Chun Chang, Guoliang Jin, and Shan Lu. 2013.
Production-run Software Failure Diagnosis via Hardware Perfor-
mance Counters. In Proceedings of the Eighteenth International Con-
ference on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS ’13). ACM, New York, NY, USA, 101-112.
https://doi.org/10.1145/2451116.2451128

[15] Joy Arulraj, Guoliang Jin, and Shan Lu. 2014. Leveraging the Short-
term Memory of Hardware to Diagnose Production-run Software
Failures. In Proceedings of the 19th International Conference on Ar-
chitectural Support for Programming Languages and Operating Sys-
tems (ASPLOS ’14). ACM, New York, NY, USA, 207-222. https:
//doi.org/10.1145/2541940.2541973

[16] Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford. 2010. Effi-
cient System-enforced Deterministic Parallelism. In Proceedings of the
9th USENIX Conference on Operating Systems Design and Implemen-
tation (OSDI’10). USENIX Association, Berkeley, CA, USA, 193-206.
http://dl.acm.org/citation.cfm?id=1924943.1924957

[17] Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and Dan
Grossman. 2010. CoreDet: A Compiler and Runtime System for De-
terministic Multithreaded Execution. In Proceedings of the Fifteenth
Edition of ASPLOS on Architectural Support for Programming Languages
and Operating Systems (ASPLOS XV). ACM, New York, NY, USA, 53-64.
https://doi.org/10.1145/1736020.1736029

[18] Tom Bergan, Joseph Devietti, Nicholas Hunt, and Luis Ceze. 2011. The
Deterministic Execution Hammer: How Well Does it Actually Pound
Nails?. In The 2nd Workshop on Determinism and Correctness in Parallel
Programming (WODET ’11).

[19] Tom Bergan, Nicholas Hunt, Luis Ceze, and Steven D. Gribble. 2010.
Deterministic Process Groups in dOS. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation (OSDI’10).
USENIX Association, Berkeley, CA, USA, 177-191. http://dl.acm.org/
citation.cfm?id=1924943.1924956

[20] Emery D. Berger, Ting Yang, Tongping Liu, and Gene Novark. 2009.
Grace: Safe Multithreaded Programming for C/C++. In Proceedings of
the 24th ACM SIGPLAN Conference on Object Oriented Programming
Systems Languages and Applications (OOPSLA °09). ACM, New York,
NY, USA, 81-96. https://doi.org/10.1145/1640089.1640096

[21] Robert L. Bocchino, Jr., Vikram S. Adve, Sarita V. Adve, and Marc Snir.
2009. Parallel Programming Must Be Deterministic by Default. In
Proceedings of the First USENIX Conference on Hot Topics in Parallelism
(HotPar’09). USENIX Association, Berkeley, CA, USA, 4-4. http://dl.
acm.org/citation.cfm?id=1855591.1855595

[22] Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve,
Stephen Heumann, Rakesh Komuravelli, Jeffrey Overbey, Patrick Sim-
mons, Hyojin Sung, and Mohsen Vakilian. 2009. A Type and Effect
System for Deterministic Parallel Java. In Proceedings of the 24th ACM
SIGPLAN Conference on Object Oriented Programming Systems Lan-
guages and Applications (OOPSLA °09). ACM, New York, NY, USA,
97-116. https://doi.org/10.1145/1640089.1640097

[23] Robert L. Bocchino, Jr., Stephen Heumann, Nima Honarmand, Sarita V.
Adve, Vikram S. Adve, Adam Welc, and Tatiana Shpeisman. 2011. Safe
Nondeterminism in a Deterministic-by-default Parallel Language. In
Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on

253

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Qi Zhao, Zhengyi Qiu, and Guoliang Jin

Principles of Programming Languages (POPL °11). ACM, New York, NY,
USA, 535-548. https://doi.org/10.1145/1926385.1926447

Yan Cai and Lingwei Cao. 2016. Fixing Deadlocks via Lock Pre-
acquisitions. In Proceedings of the 38th International Conference on
Software Engineering (ICSE '16). ACM, New York, NY, USA, 1109-1120.
https://doi.org/10.1145/2884781.2884819

Heming Cui, Rui Gu, Cheng Liu, Tianyu Chen, and Junfeng Yang. 2015.
Paxos Made Transparent. In Proceedings of the 25th Symposium on
Operating Systems Principles (SOSP ’15). ACM, New York, NY, USA,
105-120. https://doi.org/10.1145/2815400.28 15427

Heming Cui, Jiri Simsa, Yi-Hong Lin, Hao Li, Ben Blum, Xinan Xu,
Junfeng Yang, Garth A. Gibson, and Randal E. Bryant. 2013. Parrot:
A Practical Runtime for Deterministic, Stable, and Reliable Threads.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (SOSP ’13). ACM, New York, NY, USA, 388-405.
https://doi.org/10.1145/2517349.2522735

Heming Cui, Jingyue Wu, John Gallagher, Huayang Guo, and Junfeng
Yang. 2011. Efficient Deterministic Multithreading Through Schedule
Relaxation. In Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles (SOSP ’11). ACM, New York, NY, USA,
337-351. https://doi.org/10.1145/2043556.2043588

Heming Cui, Jingyue Wu, Chia-Che Tsai, and Junfeng Yang. 2010.
Stable Deterministic Multithreading Through Schedule Memoization.
In Proceedings of the 9th USENIX Conference on Operating Systems
Design and Implementation (OSDI’10). USENIX Association, Berkeley,
CA, USA, 207-221. http://dl.acm.org/citation.cfm?id=1924943.1924958
Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark Oskin. 2009. DMP:
Deterministic Shared Memory Multiprocessing. In Proceedings of the
14th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XIV). ACM, New York, NY,
USA, 85-96. https://doi.org/10.1145/1508244.1508255

Joseph Devietti, Jacob Nelson, Tom Bergan, Luis Ceze, and Dan Gross-
man. 2011. RCDC: A Relaxed Consistency Deterministic Computer.
In Proceedings of the Sixteenth International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASP-
LOS XVI). ACM, New York, NY, USA, 67-78. https://doi.org/10.1145/
1950365.1950376

Monika Dhok, Rashmi Mudduluru, and Murali Krishna Ramanathan.
2015. Pegasus: Automatic Barrier Inference for Stable Multithreaded
Systems. In Proceedings of the 2015 International Symposium on Software
Testing and Analysis (ISSTA 2015). ACM, New York, NY, USA, 153-164.
https://doi.org/10.1145/2771783.2771813

Perry A. Emrath and David A. Padua. 1988. Automatic Detection of
Nondeterminacy in Parallel Programs. In Proceedings of the 1988 ACM
SIGPLAN and SIGOPS Workshop on Parallel and Distributed Debugging
(PADD °88). ACM, New York, NY, USA, 89-99. https://doi.org/10.1145/
68210.69224

Gagan Gupta, Srinath Sridharan, and Gurindar S. Sohi. 2014. Globally
Precise-restartable Execution of Parallel Programs. In Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 14). ACM, New York, NY, USA, 181-192.
https://doi.org/10.1145/2594291.2594306

Derek R. Hower, Polina Dudnik, Mark D. Hill, and David A. Wood. 2011.
Calvin: Deterministic or Not? Free Will to Choose. In Proceedings of the
2011 IEEE 17th International Symposium on High Performance Computer
Architecture (HPCA °11). IEEE Computer Society, Washington, DC,
USA, 333-334. http://dl.acm.org/citation.cfm?id=2014698.2014870
Jeff Huang, Charles Zhang, and Julian Dolby. 2013. CLAP: Recording
Local Executions to Reproduce Concurrency Failures. In Proceedings of
the 34th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’13). ACM, New York, NY, USA, 141-152.
https://doi.org/10.1145/2491956.2462167

Nicholas Hunt, Tom Bergan, Luis Ceze, and Steven D. Gribble. 2013.
DDOS: Taming Nondeterminism in Distributed Systems. In Proceedings

http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.imagemagick.org/script/index.php
http://www.nas.nasa.gov/publications/npb.html
http://www.nas.nasa.gov/publications/npb.html
http://www.openldap.org/
http://redis.io/
https://doi.org/10.1145/1629575.1629594
https://doi.org/10.1145/2451116.2451128
https://doi.org/10.1145/2541940.2541973
https://doi.org/10.1145/2541940.2541973
http://dl.acm.org/citation.cfm?id=1924943.1924957
https://doi.org/10.1145/1736020.1736029
http://dl.acm.org/citation.cfm?id=1924943.1924956
http://dl.acm.org/citation.cfm?id=1924943.1924956
https://doi.org/10.1145/1640089.1640096
http://dl.acm.org/citation.cfm?id=1855591.1855595
http://dl.acm.org/citation.cfm?id=1855591.1855595
https://doi.org/10.1145/1640089.1640097
https://doi.org/10.1145/1926385.1926447
https://doi.org/10.1145/2884781.2884819
https://doi.org/10.1145/2815400.2815427
https://doi.org/10.1145/2517349.2522735
https://doi.org/10.1145/2043556.2043588
http://dl.acm.org/citation.cfm?id=1924943.1924958
https://doi.org/10.1145/1508244.1508255
https://doi.org/10.1145/1950365.1950376
https://doi.org/10.1145/1950365.1950376
https://doi.org/10.1145/2771783.2771813
https://doi.org/10.1145/68210.69224
https://doi.org/10.1145/68210.69224
https://doi.org/10.1145/2594291.2594306
http://dl.acm.org/citation.cfm?id=2014698.2014870
https://doi.org/10.1145/2491956.2462167

QITHREAD

[37

—

(38

—

(39

—

(40]

[41]

(42

—

[43]

(4]

(45]

[46]

(47]

(48]

(49]

of the Eighteenth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’13). ACM,
New York, NY, USA, 499-508. https://doi.org/10.1145/2451116.2451170
Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit.
2011. Automated Atomicity-violation Fixing. In Proceedings of the
32Nd ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI '11). ACM, New York, NY, USA, 389-400.
https://doi.org/10.1145/1993498.1993544

Guoliang Jin, Aditya Thakur, Ben Liblit, and Shan Lu. 2010. Instru-
mentation and Sampling Strategies for Cooperative Concurrency
Bug Isolation. In Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages and Applica-
tions (OOPSLA ’10). ACM, New York, NY, USA, 241-255. https:
//doi.org/10.1145/1869459.1869481

Guoliang Jin, Wei Zhang, Dongdong Deng, Ben Liblit, and Shan Lu.
2012. Automated Concurrency-bug Fixing. In Proceedings of the 10th
USENIX Conference on Operating Systems Design and Implementation
(OSDr’'12). USENIX Association, Berkeley, CA, USA, 221-236. http:
//dl.acm.org/citation.cfm?id=2387880.2387902

Yiyan Lin and Sandeep S. Kulkarni. 2014. Automatic Repair for Multi-
threaded Programs with Deadlock/Livelock Using Maximum Satisfia-
bility. In Proceedings of the 2014 International Symposium on Software
Testing and Analysis (ISSTA 2014). ACM, New York, NY, USA, 237-247.
https://doi.org/10.1145/2610384.2610398

Haopeng Liu, Yuxi Chen, and Shan Lu. 2016. Understanding and
Generating High Quality Patches for Concurrency Bugs. In Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE 2016). ACM, New York, NY, USA, 715-726.
https://doi.org/10.1145/2950290.2950309

Tongping Liu, Charlie Curtsinger, and Emery D. Berger. 2011. Dthreads:
Efficient Deterministic Multithreading. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles (SOSP ’11).
ACM, New York, NY, USA, 327-336. https://doi.org/10.1145/2043556.
2043587

Kai Lu, Xu Zhou, Tom Bergan, and Xiaoping Wang. 2014. Efficient
Deterministic Multithreading Without Global Barriers. In Proceedings
of the 19th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP ’14). ACM, New York, NY, USA, 287-300.
https://doi.org/10.1145/2555243.2555252

Kai Lu, Xu Zhou, Xiao-Ping Wang, Tom Bergan, and Chen Chen. 2015.
An Efficient and Flexible Deterministic Framework for Multithreaded
Programs. Journal of Computer Science and Technology 30, 1 (01 Jan
2015), 42-56. https://doi.org/10.1007/s11390-015-1503-8

Timothy Merrifield, Joseph Devietti, and Jakob Eriksson. 2015. High-
performance Determinism with Total Store Order Consistency. In
Proceedings of the Tenth European Conference on Computer Systems
(EuroSys ’15). ACM, New York, NY, USA, Article 31, 13 pages. https:
//doi.org/10.1145/2741948.2741960

Timothy Merrifield and Jakob Eriksson. 2013. Conversion: Multi-
version Concurrency Control for Main Memory Segments. In Pro-
ceedings of the 8th ACM European Conference on Computer Systems
(EuroSys ’13). ACM, New York, NY, USA, 127-139. https://doi.org/10.
1145/2465351.2465365

Robert H. B. Netzer and Barton P. Miller. 1992. What Are Race Con-
ditions?: Some Issues and Formalizations. ACM Lett. Program. Lang.
Syst. 1, 1 (March 1992), 74-88. https://doi.org/10.1145/130616.130623
Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2014. Deter-
ministic Galois: On-demand, Portable and Parameterless. In Proceed-
ings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’14). ACM,
New York, NY, USA, 499-512. https://doi.org/10.1145/2541940.2541964
Marek Olszewski, Jason Ansel, and Saman Amarasinghe. 2009. Kendo:
Efficient Deterministic Multithreading in Software. In Proceedings of

254

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

the 14th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS XIV). ACM, New
York, NY, USA, 97-108. https://doi.org/10.1145/1508244.1508256
Soyeon Park, Shan Lu, and Yuanyuan Zhou. 2009. CTrigger: Exposing
Atomicity Violation Bugs from Their Hiding Places. In Proceedings
of the 14th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS XIV). ACM, New
York, NY, USA, 25-36. https://doi.org/10.1145/1508244.1508249
Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning Yin, Rini
Kaushik, Kyu H. Lee, and Shan Lu. 2009. PRES: Probabilistic Replay
with Execution Sketching on Multiprocessors. In Proceedings of the
ACM SIGOPS 22Nd Symposium on Operating Systems Principles (SOSP
’09). ACM, New York, NY, USA, 177-192. https://doi.org/10.1145/
1629575.1629593

Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski,
and Christos Kozyrakis. 2007. Evaluating MapReduce for Multi-core
and Multiprocessor Systems. In Proceedings of the 2007 IEEE 13th In-
ternational Symposium on High Performance Computer Architecture
(HPCA °07). IEEE Computer Society, Washington, DC, USA, 13-24.
https://doi.org/10.1109/HPCA.2007.346181

Cedomir Segulja and Tarek S. Abdelrahman. 2012. Architectural sup-
port for synchronization-free deterministic parallel programming. In
IEEE International Symposium on High-Performance Comp Architecture.
1-12. https://doi.org/10.1109/HPCA.2012.6169038

Cedomir Segulja and Tarek S. Abdelrahman. 2014. What is the Cost of
Weak Determinism?. In Proceedings of the 23rd International Conference
on Parallel Architectures and Compilation (PACT ’14). ACM, New York,
NY, USA, 99-112. https://doi.org/10.1145/2628071.2628099

Tiago M. Vale, Jodo A. Silva, Ricardo J. Dias, and Jodao M. Lourenco.
2016. Pot: Deterministic Transactional Execution. ACM Trans. Archit.
Code Optim. 13, 4, Article 52 (Dec. 2016), 24 pages. https://doi.org/10.
1145/3017993

Jiti Simsa, Randy Bryant, and Garth Gibson. 2011. dBug: Systematic
Testing of Unmodified Distributed and Multi-threaded Systems. In
Proceedings of the 18th International SPIN Conference on Model Checking
Software. Springer-Verlag, Berlin, Heidelberg, 188-193. http://dl.acm.
org/citation.cfm?id=2032692.2032712

Yin Wang, Terence Kelly, Manjunath Kudlur, Stéphane Lafortune, and
Scott Mahlke. 2008. Gadara: Dynamic Deadlock Avoidance for Mul-
tithreaded Programs. In Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation (OSDI’08). USENIX As-
sociation, Berkeley, CA, USA, 281-294. http://dl.acm.org/citation.
cfm?id=1855741.1855761

Weiwei Xiong, Soyeon Park, Jiaqi Zhang, Yuanyuan Zhou, and
Zhigiang Ma. 2010. Ad Hoc Synchronization Considered Harmful.
In Proceedings of the 9th USENIX Conference on Operating Systems De-
sign and Implementation (OSDI’10). USENIX Association, Berkeley, CA,
USA, 163-176. http://dl.acm.org/citation.cfm?id=1924943.1924955
Wei Zhang, Junghee Lim, Ramya Olichandran, Joel Scherpelz, Guo-
liang Jin, Shan Lu, and Thomas Reps. 2011. ConSeq: Detecting Concur-
rency Bugs Through Sequential Errors. In Proceedings of the Sixteenth
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS XVI). ACM, New York, NY,
USA, 251-264. https://doi.org/10.1145/1950365.1950395

Wei Zhang, Chong Sun, and Shan Lu. 2010. ConMem: Detecting
Severe Concurrency Bugs Through an Effect-oriented Approach. In
Proceedings of the Fifteenth Edition of ASPLOS on Architectural Support
for Programming Languages and Operating Systems (ASPLOS XV). ACM,
New York, NY, USA, 179-192. https://doi.org/10.1145/1736020.1736041
Yu Zhang, Zhao-Peng Li, and Hui-Fang Cao. 2015. System-Enforced
Deterministic Streaming for Efficient Pipeline Parallelism. Journal of
Computer Science and Technology 30, 1 (01 Jan 2015), 57-73. https:
//doi.org/10.1007/s11390-015-1504-7

https://doi.org/10.1145/2451116.2451170
https://doi.org/10.1145/1993498.1993544
https://doi.org/10.1145/1869459.1869481
https://doi.org/10.1145/1869459.1869481
http://dl.acm.org/citation.cfm?id=2387880.2387902
http://dl.acm.org/citation.cfm?id=2387880.2387902
https://doi.org/10.1145/2610384.2610398
https://doi.org/10.1145/2950290.2950309
https://doi.org/10.1145/2043556.2043587
https://doi.org/10.1145/2043556.2043587
https://doi.org/10.1145/2555243.2555252
https://doi.org/10.1007/s11390-015-1503-8
https://doi.org/10.1145/2741948.2741960
https://doi.org/10.1145/2741948.2741960
https://doi.org/10.1145/2465351.2465365
https://doi.org/10.1145/2465351.2465365
https://doi.org/10.1145/130616.130623
https://doi.org/10.1145/2541940.2541964
https://doi.org/10.1145/1508244.1508256
https://doi.org/10.1145/1508244.1508249
https://doi.org/10.1145/1629575.1629593
https://doi.org/10.1145/1629575.1629593
https://doi.org/10.1109/HPCA.2007.346181
https://doi.org/10.1109/HPCA.2012.6169038
https://doi.org/10.1145/2628071.2628099
https://doi.org/10.1145/3017993
https://doi.org/10.1145/3017993
http://dl.acm.org/citation.cfm?id=2032692.2032712
http://dl.acm.org/citation.cfm?id=2032692.2032712
http://dl.acm.org/citation.cfm?id=1855741.1855761
http://dl.acm.org/citation.cfm?id=1855741.1855761
http://dl.acm.org/citation.cfm?id=1924943.1924955
https://doi.org/10.1145/1950365.1950395
https://doi.org/10.1145/1736020.1736041
https://doi.org/10.1007/s11390-015-1504-7
https://doi.org/10.1007/s11390-015-1504-7

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

A Artifact Appendix
A.1 Abstract

Our artifact can be downloaded through Github or ACM DL,
and it provides the source code of our QITHREAD library,
as well as scripts to download all the benchmarks used in
our paper, automatically build them, and generate time data
from these benchmarks using our library. Our installation in-
structions are tested on a Ubuntu Linux 16.04 machine with
an x86_64 architecture, and our experiments are conducted
on a machine having two Xeon E5-2670 processors with a
total of 32 logical processors and 128GB memory. While our
artifact should be runnable on any multi-core machine, some
benchmarks are configured to create 24 threads in our exper-
iments. All benchmarks and dataset needed for evaluation
can be downloaded using our scripts or are already included
in our artifact.

A.2 Artifact Check-List (Meta-Information)

e Algorithm: Semantic-aware scheduling algorithms for a

synchronization-determinism runtime.

Program: SPLASH-2x, NPB 3.3.1, PARSEC 2.0, Phoenix 2,

pbzip2, aget, pfscan, bdb_bench3n, openldap, mplayer men-

coder, redis, ImageMagick, and STL libstdc++-v3. Scripts are

included to automatically download and build them.

Compilation: GCC 5.4 and GCC 4.7 installed from Ubuntu

repository. Instructions are provided to install them.

Data set: Included or downloaded with scripts provided.

¢ Run-time environment: Tested on Ubuntu Linux 16.04
x86_64. Instructions are provided to install all the necessary
libraries and tools from a fresh Ubuntu installation.

e Hardware: Some benchmarks are configured to create 24

threads in our experiments, so we recommend a configura-

tion with at least 24 logical processors.

Metrics: Overheads against nondeterministic executions

are reported for all the benchmarks with all scheduling poli-

cies turned on.

Output: The metrics are written to csv files in a folder

created for each evaluation script execution.

Experiments: A script to evaluate everything is provided.

Configuration files and evaluation scripts for evaluating each

individual benchmark suite are also included.

e How much disk space required (approximately)?:
About 40 GB.

e How much time is needed to complete experiments

(approximately)?: For our machine, it takes about 70 hours

to run all the benchmarks with the default configuration.

Publicly available?: Yes, it’s available on both GitHub and

ACM DL.

A.3 Description

A.3.1 How Delivered

Our artifact is available on Github:
https://github.com/chyiz/QiThread

and ACM DL:
https://doi.org/10.1145/3300171

255

Qi Zhao, Zhengyi Qiu, and Guoliang Jin

A.3.2 Hardware Dependencies

We conducted our experiments on a machine with two Xeon
E5-2670 processors and 128GB memory. While our code
should be runnable on any multi-core machines, we recom-
mend a configuration with more than 24 logical processors,
since benchmarks are sometimes configured to create 24
threads in our experiments.

A.3.3 Software Dependencies

Our build scripts assume a Ubuntu Linux 16.04 installation
on an x86_64 platform. For other Linux distributions, you
may use the provided Dockerfile to create a Docker image.
You need to have Docker installed to use the Dockerfile.
Software packages required to build the library and bench-
marks will be installed automatically by the build scripts. No
other software is needed to build or run the experiments.

A.4 Installation

Clone our repository from Github:

git clone https://github.com/chyiz/QiThread.git

The easiest way to use our artifact is to create a Docker
image from the Dockerfile provided in the repository. In the
project root folder, run:

sudo docker build -t qgithread .

After a while, a Docker image will be available with tag
githread. You may run it with:

sudo docker run -it qgithread

You will then be able to run all the experiments inside the
Docker image.

Alternatively, you can compile our library and all the
benchmarks directly. However, our build scripts assume an
x86_64 Ubuntu 16.04 environment. For other Linux distri-
butions, you may need to make some necessary changes or
just use the Dockerfile.

Please see more detailed installation instructions in the
README file provided in the artifact.

A.5 Experiment Workflow

To run the experiments, go to the eval folder and execute:

./eval_policy.py all-default-config.cfg

The evaluation results will be saved to a folder named
all-default-config<Execution_Date_and_Time>.

A symbolic link current is also modified to always point
to the latest evaluation results.

To extract all results into one file, run:

./get_all_results.sh current/ > results.csv

The results are then stored into a comma separated values
(csv) file that can be imported to a spreadsheet.

At last, to generate the graphs used in our paper, open
generate-figure.ipynb in the eval folder with Jupyter
Notebook and run all cells. It will read the results.csv file
in the same folder by default.

https://github.com/chyiz/QiThread
https://doi.org/10.1145/3300171

QITHREAD

A.6 Evaluation and Expected Result

The results contain all 108 benchmarks evaluated, and each
of them reports the average overhead and multiple execu-
tion times when running with different configurations. Each
benchmark will have four or five rows in the final results:
one non-det row representing nondeterministic execution
as the baseline, one no-hint row for round-robin scheduling
with no performance hints, one hinted row for round-robin
scheduling with all performance hints, one all-policies
row representing the QITHREAD results with all policies on,
and some benchmarks have one no-pcs-hint row for round-
robin scheduling with only soft barrier hints but no perfor-
mance critical section hints.

Given the hardware differences, it may be difficult to re-
produce the exact same numbers as in our paper, but we
expect the trend to be the same.

A.7 Experiment Customization

The experiment parameters can be adjusted by modifying
the evaluation configuration files (. cfg in the eval folder).
Several sample configuration files are provided in the ar-
tifact. For example, all-default-config.cfg runs all the
benchmarks under (1) round-robin scheduling with or with-
out performance hints and (2) QITHREAD with all policies
enabled, and all-compare-policies.cfgadditionally tries
other different combinations of policies. There are also con-
figuration files, like phoenix-compare-policies.cfg, that
only execute one benchmark suite.

You may start by copying a segment from one of the sam-
ple configuration files and modify some of the parameters.
Some interesting ones are listed below:

e REPEATS: number of tests to run for a benchmark. Ex-
ecution times will be averaged to get an overhead.

e INPUTS: command line parameters for a benchmark.

e EXPORT: environment variables for a benchmark.

e INIT_ENV_CMD: commands to initialize the environ-
ment before running a benchmark.

e TARBALL or GZIP: data files that need to be extracted
before running a benchmark.

e REQUIRED_FILES: files that need to be copied to the
evaluation folder before running a benchmark. This
can be configuration files and data files that do not
require decompression.

e RUN_CONFIGS: a list of scheduling policies to try.

A.8 Methodology
Submission, reviewing, and badging methodology:

e http://cTuning.org/ae/submission-20180713.html
e http://cTuning.org/ae/reviewing-20180713.html

PPoPP ’19, February 16-20, 2019, Washington, DC, USA

e https://www.acm.org/publications/policies/artifact-review-badging

256

http://cTuning.org/ae/submission-20180713.html
http://cTuning.org/ae/reviewing-20180713.html
https://www.acm.org/publications/policies/artifact-review-badging

	Abstract
	1 Introduction
	2 Limitations of Existing Policies
	3 Scheduling Policies and Illustrations
	3.1 BoostBlocked: Prioritizing Blocked Threads
	3.2 CreateAll: [basicstyle=,language=C++]pthreadcreate Loops Create All
	3.3 CSWhole: Critical Sections Scheduled as a Whole
	3.4 WakeAMAP: Wake Up as Many as Possible
	3.5 BranchedWake: Branched Unblocking

	4 Implementation
	4.1 Parrot Architecture and Interface
	4.2 QiThread Implementation

	5 Evaluation
	5.1 Performance
	5.2 Effectiveness of Different Policies
	5.3 Scalability

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List (Meta-Information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Result
	A.7 Experiment Customization
	A.8 Methodology

