
Understanding and Reaching the Performance Limit
of Schedule Tuning on Stable Synchronization Determinism

Qi Zhao∗

Department of Computer Science
North Carolina State University

Raleigh, NC, United States
qzhao6@ncsu.edu

Zhengyi Qiu
Department of Computer Science
North Carolina State University

Raleigh, NC, United States
zqiu2@ncsu.edu

Shudi Shao
Department of Computer Science
North Carolina State University

Raleigh, NC, United States
sshao@ncsu.edu

Xinning Hui
Department of Computer Science
North Carolina State University

Raleigh, NC, United States
xhui@ncsu.edu

Hassan Ali Khan
Department of Computer Science
North Carolina State University

Raleigh, NC, United States
hakhan@ncsu.edu

Guoliang Jin
Department of Computer Science
North Carolina State University

Raleigh, NC, United States
guoliang_jin@ncsu.edu

ABSTRACT

Deterministic MultiThreading (DMT) systems eliminate nondeter-

minism from the dynamic executions of multithreaded programs.

They can greatly simplify multithreaded programming and ease

the deployment of systems that rely on replication. We �rst catego-

rize and compare existing DMT system designs along three axes,

incorporating the most recent advances in DMT systems. From our

study, we conclude that stable synchronization determinism is the

most cost-e�ective design, and it is thus the focus of our work.

To reduce the overhead of enforcing stable synchronization de-

terminism, previous work has explored scheduling-based methods

that tune the synchronization schedule. However, it is not clear how

low the performance overhead can be through schedule tuning and

how to reach the performance limit. To answer these questions, we

then follow an iterative process of understanding the performance

limit of schedule tuning on stable synchronization determinism and

designing new scheduling policies to reach the performance limit.

Through this process, we identify two types of scheduling-oblivious

overheads that cannot be eliminated by schedule tuning alone. In

addition, we also design a group of new policies and implement

them in minSMT.

Our evaluation shows that minSMT successfully reaches the per-

formance limit of stable synchronization determinism on 107 out of

108 benchmarks after excluding the impact of scheduling-oblivious

overheads, and this also results in signi�cant performance im-

provements compared with state-of-the-art stable synchronization-

determinism systems on 9 benchmarks. Our results also suggest

that, to further improve the performance of stable synchronization

∗Qi Zhao is also a full-time employee at Google at the time of publication, and this
work is done at North Carolina State University where he is pursing his Ph.D. degree.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

PACT ’22, October 10–12, 2022, Chicago, IL, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9868-8/22/10. . . $15.00
https://doi.org/10.1145/3559009.3569669

determinism, future research should focus on addressing the two

types of scheduling-oblivious overheads with approaches other

than schedule tuning.

CCS CONCEPTS

• Software and its engineering → Software performance;

Scheduling; Synchronization; Multithreading; Software re-

liability; • Computing methodologies → Parallel computing

methodologies.

KEYWORDS

stable synchronization determinism, performance limit, synchro-

nization scheduling, scheduling-oblivious overheads, totally-ordered

synchronization, workload-length imbalance

ACM Reference Format:

Qi Zhao, Zhengyi Qiu, Shudi Shao, Xinning Hui, Hassan Ali Khan, and Guo-

liang Jin. 2022. Understanding and Reaching the Performance Limit of

Schedule Tuning on Stable Synchronization Determinism. In International

Conference on Parallel Architectures and Compilation Techniques (PACT ’22),

October 10–12, 2022, Chicago, IL, USA. ACM, New York, NY, USA, 16 pages.

https://doi.org/10.1145/3559009.3569669

1 INTRODUCTION

Multithreaded programs are prevalent and critical for utilizing the

computing power of multicore processors. However, multithreaded

programs are nondeterministic by default, where threads can in-

terleave di�erently in di�erent executions as long as the resulting

interleavings are compatible with program synchronization.

While such �exibility bene�ts performance, multithreaded pro-

grams can exhibit nondeterministic behaviors even with the same

inputs, and such nondeterminism is undesirable frommany perspec-

tives. For example, the vast number of possible interleavings that an

execution could run into nondeterministically makes it infeasible

to guarantee all interleavings are free of concurrency bugs. As a

result, concurrency bugs are common in many widely used mul-

tithreaded programs [46], and some have caused real-world disas-

ters [42, 57]. As another example, nondeterminismmakes it di�cult

for techniques that rely on replication, e.g., State Machine Replica-

tion (SMR), which is a powerful fault tolerance technique [40, 56], to

take advantage of parallel hardware and scale to multi-core servers.

223

https://orcid.org/0000-0002-9412-4973
https://doi.org/10.1145/3559009.3569669
https://doi.org/10.1145/3559009.3569669
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3559009.3569669&domain=pdf&date_stamp=2023-01-27

PACT ’22, October 10–12, 2022, Chicago, IL, USA Qi Zhao, Zhengyi Qiu, Shudi Shao, Xinning Hui, Hassan Ali Khan, and Guoliang Jin

The complexity of existing systems that tolerate nondeterministic

executions [31, 39] imposes a signi�cant barrier for their adoption

in practice.

Deterministic MultiThreading (DMT) systems [15, 16, 18, 19, 26–

30, 34, 44, 45, 48–50, 52, 63] address this nondeterminism issue by

eliminating or reducing two main internal sources of nondetermin-

ism, i.e., nondeterministic synchronization-operation orders and

nondeterministic shared-memory-access orders. DMT systems can

greatly simplify debugging, testing, veri�cation, record-replay, and

fault-tolerant replication of multithreaded programs [17, 22, 25, 26,

61]. As the bene�ts of DMT systems come at a performance cost,

which could sometimes be signi�cant, researchers have proposed

di�erent DMT system designs to explore the tradeo� between de-

terminism guarantees and performance.

Depending on whether and how they eliminate the two inter-

nal sources of nondeterminism, di�erent DMT systems provide

di�erent types of determinism guarantees and incur di�erent per-

formance overheads. As we will detail the categorization and com-

parison of existing DMT systems in the next section, stable syn-

chronization determinism is the most cost-e�ective design among

existing DMT systems, where synchronization determinism means

that the DMT systems enforce a deterministic order only on syn-

chronization operations, and stable means the DMT systems use

the same schedule, i.e., the order of synchronization operations, on

many di�erent inputs and upon minor program changes [62].

With schedule stability, the synchronization schedule for one

input will remain the same as long as synchronization code is not

changed, and the synchronization schedules for various inputs will

be the same as long as theymake threads execute the same sequence

of synchronization operations. Such a stability guarantee will allow

programmers to make minor changes, such as adding printf()

statements, for debugging without changing the schedule and ease

the overall understanding of multithreaded programs. More im-

portantly, schedule stability makes synchronization determinism

e�ective by itself without enforcing the costly memory-access de-

terminism [26, 63], making it the most cost-e�ective design.

Although stable synchronization determinism does not need

extra heavyweight mechanisms associated with enforcing memory-

access determinism, achieving good performance while enforcing

stable synchronization determinism is still not trivial. Speci�cally,

existing DMT systems that provide schedule stability all use round

robin as the base of their scheduling policies, where threads are

scheduled in a round-robin fashion to execute synchronization

operations, but a vanilla round-robin policy can limit concurrency

and make threads all serialized in the worst case [26, 63].

To solve the aforementioned problem and achieve good perfor-

mance, state-of-the-art stable synchronization determinism systems

di�er in their round-robin-based scheduling policies. Parrot [26],

the pioneering stable synchronization determinism system, pro-

vides two scheduling annotations that programmers can manually

add to hint DMT systems on how to schedule certain code regions

to achieve better performance. One recent work, QiThread [63],

proposes scheduling policies leveraging synchronization seman-

tics without requiring extra annotations. While these proposals

improve the performance of stable synchronization determinism,

it is not clear whether they have reached the performance limit of

schedule tuning and any further improvement can be made.

In this paper, we aim to understand the performance limit of

schedule tuning on stable synchronization determinism and build

a stable synchronization determinism system that can reach the

limit. Speci�cally, we strive to understand what types of overheads

are oblivious to scheduling that cannot be addressed by tuning the

schedule of synchronization operations. Meanwhile, we seek to

build a stable synchronization determinism system that can reach

the performance limit modulo the impact of scheduling-oblivious

overheads by resolving as many remaining scheduling-dependent

overheads as possible. We expect our results to help researchers

determine whether they should keep spending more e�ort on ad-

dressing scheduling-dependent overheads as done in existing work

or instead focus on addressing scheduling-oblivious overheads.

To ful�ll our goal, we follow an iterative approach in design, im-

plementation, and evaluation. We use all the 108 programs used for

evaluating Parrot [26] and QiThread [63], which is the largest set

of benchmarks used for evaluating DMT systems in the literature,

and the set includes 55 real-world programs and 53 programs from

four widely used benchmark suites. Among these benchmarks, we

start from ones with a high overhead on state-of-the-art stable syn-

chronization determinism systems, andwe iteratively form hypothe-

ses about possible types of scheduling-oblivious overheads and

design new scheduling policies to address scheduling-dependent

overheads. We stop when evaluation shows the new scheduling

policies can help us reach the performance limit after excluding the

impact of scheduling-oblivious overheads.

To this end, we identify two types of scheduling-oblivious over-

heads, namely totally-ordered synchronization and workload-length

imbalance. Although Merri�eld et al. proposed techniques to en-

force a partial order on synchronization operations, the resulting

DMT system is deeply coupled with memory-access determinism

and is more costly than a stable DMT system enforcing synchroniza-

tion determinism only. We will elaborate on why it is challenging

to decouple partially-ordered synchronization with memory-access

determinism and argue why we consider totally-ordered synchro-

nization one type of scheduling-oblivious overhead. For workload-

length imbalance, it is a new source of overhead that has not been

discussed in the literature before, and it cannot be addressed by

schedule tuning due to the requirement of providing schedule sta-

bility. We also design techniques to exclude their impact while eval-

uating the overhead of stable synchronization determinism systems.

In the meantime, we develop several new policies and annotations

to address the remaining scheduling-dependent overheads, and we

implement them in minSMT.

Our evaluation using the large set of 108 benchmarks shows

that minSMT reaches the performance limit of schedule tuning on

stable synchronization determinism on all but one of the bench-

marks.We also identify challenges that prevent us from determining

whether minSMT reaches the performance limit on that remaining

one. Comparison between minSMT and state-of-the-art stable syn-

chronization determinism systems shows that minSMT results in

signi�cant performance improvement on 9 benchmarks without

hurting the performance of any benchmarks signi�cantly, and this

also shows that state-of-the-art stable synchronization determinism

systems fail to reach the performance limit on these 9 benchmarks.

Our approach iterates between the understanding of scheduling-

oblivious overheads and the elimination of scheduling-dependent

224

Understanding and Reaching the Performance Limit of Schedule Tuning on Stable Synchronization Determinism PACT ’22, October 10–12, 2022, Chicago, IL, USA

overheads, and we consider this iterative approach the key en-

abler for us to design and implement a more performant stable

synchronization determinism system that can directly bene�t users,

which is otherwise not achieved by state-of-the-art systems that

consider schedule tuning alone. Our work will also be useful for

the research community to decide where to spend research e�ort

to further improve DMT systems. As minSMT still exhibits very

high overheads on some benchmarks where it reaches the perfor-

mance limit of schedule tuning, future research should focus on

approaches beyond schedule tuning to address the two types of

scheduling-oblivious overheads identi�ed in this work.

Overall, the paper makes the following contributions:

• We present a detailed categorization of existing DMT systems

based on three axes. To the best of our knowledge, this is the

most up-to-date categorization of DMT systems beyond just the

separation between strong determinism and weak determinism

but also includes the most recent development on DMT systems.

• We use an iterative methodology to understand and reach the

performance limit of schedule tuning on stable synchronization

determinism, and we identify two types of scheduling-oblivious

overheads and design minSMT to eliminate most of the remain-

ing overheads after excluding scheduling-oblivious overheads.

Our methodology allows us to gain insights and achieve perfor-

mance improvement beyond the state-of-the-art.

• We conduct a thorough evaluation of our �nding of the two types

of scheduling-oblivious overheads and our design of minSMT on

a diverse set of 108 benchmarks. Our results show that minSMT

is more performant and reaches the performance limit on more

benchmarks than state-of-the-art stable synchronization deter-

minism systems. Our results also suggest that future research

should focus on addressing scheduling-oblivious overheads.

• Our artifacts, including minSMT implementation and migrated

Parrot, QiThread, and benchmarks for updated Linux kernel

and gcc, are available onGitHub at https://github.com/chyiz/minSMT/.

2 RELATED WORK

We will discuss related work on DMT systems in the next section,

wherewe provide a categorization of existingDMT runtime systems.

In this section, we �rst discuss some related work that does not

itself introduce a runtime DMT system.

Segulja and Abdelrahman analyzed the sources of nondetermin-

ism while enforcing synchronization determinism and the cost

imposed by the deterministic order while enforcing synchroniza-

tion determinism [59]. Their goal was to measure the performance

overhead that comes from the deterministic order itself but not

from the mechanism that generates and enforces the order, and

they used a schedule-record-replay framework to achieve their

goal. Their work did not propose any solutions for performance

improvement. We have a di�erent goal and di�erent focus. Our

goal is to understand the performance limit of generating and en-

forcing synchronization determinism that is stable, but we do not

separate the overhead of the schedule itself and the overhead of

generating/enforcing the schedule. We further propose techniques

to reach the performance limit, and our study and evaluation use

3× more benchmarks.

Other than DMT systems, researchers also proposed determinis-

tic programming languages [20, 21, 23, 24, 32, 51, 55] and record-

replay systems [14, 33, 35–37, 41, 43, 47, 53, 60] to address non-

determinism. While new languages are useful, DMT systems can

support existing programs. Compared with record-replay systems,

DMT systems actively control the execution of programs but not

just record, and stable DMT systems can signi�cantly shrink the

schedule space, which is valuable for multithreaded programs [62].

3 CATEGORIZATION AND COMPARISON OF
EXISTING DMT SYSTEMS

In this section, we categorize and compare existing DMT systems.

While determinism can be enforced at di�erent system levels, in-

cluding hardware [29, 30, 34, 58], runtime systems [16, 19, 26, 28,

44, 45, 48, 49, 52], programming languages [23, 24, 51], and oper-

ating systems [15, 18, 38], we focus on DMT systems that enforce

determinism at the runtime level, as such systems are the simplest

to deploy and lessons learned from runtime DMT systems can also

bene�t DMT systems in other system levels.

3.1 Three Axes for Categorization

Based on whether and how runtime DMT systems eliminate the

two internal sources of execution nondeterminism, i.e., nondeter-

ministic orders on synchronization operations and shared-memory

accesses, we categorize them along the following three axes. Note

that the �rst axis is a classic one and the last two are the results of

recent developments on DMT system concepts and designs.

(1) Synchronization determinism only or with memory-

access determinism. DMT systems were �rst categorized into just

two types depending on whether they only enforce synchroniza-

tion determinism or further enforce memory-access determinism.

DMT systems that only enforce synchronization determinism are

referred to as providing weak determinism, as programs with data

races can still run into di�erent interleavings given the same input.

DMT systems that not only enforce synchronization determinism

but also further enforce a deterministic order on shared-memory

accesses, i.e., memory-access determinism, are referred to as provid-

ing strong determinism, as they guarantee the same schedule even

for programs with data races.

However, the improvement of determinism guarantee in strong

determinism systems comes with a much higher performance over-

head compared with synchronization determinism systems, as en-

forcing memory-access determinism requires some costly mecha-

nism, e.g., memory-address space isolation for threads [44, 48, 49].

(2) Stable or not. Later, Yang et al. proposed the concept of

schedule stability [62]. A DMT systemwith schedule stability makes

schedules stable upon input changes, meaning that many inputs will

share the same schedule, and it also makes schedules stable upon

minor program changes, allowing programmers to add printf()

statements for the purpose of debugging without changing the

schedule. They argued and demonstrated using their prototype sys-

tem, Parrot [26], that races are no longer a critical issue for DMT

systems only enforcing synchronization determinism once they are

made stable. They further built an SMR system, Crane [25], atop

Parrot to show the feasibility of leveraging stable synchronization

225

PACT ’22, October 10–12, 2022, Chicago, IL, USA Qi Zhao, Zhengyi Qiu, Shudi Shao, Xinning Hui, Hassan Ali Khan, and Guoliang Jin

Table 1: The �ve types that existing DMT runtime systems can be categorized to and their representatives

Total Order Partial Order

Stable Non-Stable Stable Non-Stable

Synchronization Determinism Only 1©: Parrot [26], QiThread [63] 2©: Kendo [52] - -

With Memory-Access Determinism 3©: Dthreads [44] 4©: Conseqence [48], CoreDet [16] - 5©: LazyDet [50]

determinism for implementing SMR systems. With these results,

they established the usefulness of stable synchronization determin-

ism and suggested that the level of schedule-space reduction is a

better criterion to evaluate DMT systems [62].

All existing DMT systems use the same turn-based mechanism

to enforce synchronization determinism, and the stability of sched-

ules only depends on the scheduling policy. With the turn-based

mechanism, only one thread owns the turn at any given time, and

only the thread owning the turn is allowed to execute a synchro-

nization operation. If a thread that does not own the turn wants

to execute a synchronization operation, the thread will be blocked

until the turn is passed to it. On top of the turn-based mecha-

nism, the scheduling policy, which determines how the turn passes

around threads, is based either on logical clock [52] or round robin.

Logical-clock-based policies do not provide schedule stability, while

round-robin-based policies provide schedule stability [26, 63].

Note that the combination of mechanism and policy described

above is not only used by DMT systems that just enforce synchro-

nization determinism, but it is also used by DMT systems that fur-

ther enforce memory-access determinism. Although early strong

determinism systems serialize threads on quantum boundaries,

recent work [45, 48, 49] has demonstrated that memory-access de-

terminism can be enforced without extra program serialization on

top of the serialization caused by synchronization determinism

enforcement [59, 63]. Therefore, synchronization determinism and

memory-access determinism can be considered as two orthogonal

tasks, and progresses made in synchronization determinism can

also bene�t strong determinism systems [63]. The schedule stabil-

ity of such strong determinism systems only depends on how they

enforce synchronization determinism. Although some early strong

determinism systems are stable, they did not distill the concept of

schedule stability. The early weak determinism system, Kendo [52],

is not stable.

(3) Total order or partial order. More recently, Merri�eld et al.

proposed to enforce a partial order, which only orders synchroniza-

tion operations if they operate on some common synchronization

variables, but not a total order regardless of variables, and imple-

mented such a system, LazyDet [50]. Their motivation is to reduce

the overhead of DMT systems for programs using �ne-grained locks

with frequent lock operations. Before LazyDet, all DMT systems

enforced a total order on synchronization operations, and this can

lead to a high performance overhead for such programs. With a

partial order but not a total order on synchronization operations,

the performance overhead can be reduced.

LazyDet enforces a partial order on synchronization operations

through speculation, and it is enabled by thread-level memory-

address isolation [50]. Since thread-level memory-address isolation

also enables strong determinism, the partial order on synchroniza-

tion operations is deeply coupled with strong determinism. Evalua-

tion of LazyDet on a microbenchmark using a lot of �ne-grained

locks shows that it can reduce the overhead to be lower than only

enforcing synchronization determinism with a total order. How-

ever, the execution time is still at least 16× of nondeterministic

executions, the cost of which is partly due to the fact that LazyDet

is deeply coupled with thread isolation and strong determinism.

On real-world benchmarks, the performance bene�t of LazyDet

is marginal, as these programs use much fewer or no �ne-grained

locks and the speculationmechanism leads to extra overhead. There-

fore, the performance overhead is often similar to a totally-ordered

strong determinism system and higher than a DMT system that only

enforces synchronization determinism on real-world benchmarks.

3.2 Categorization and Comparison

Table 1 categorizes existing DMT systems along the three axes.

Only one system, i.e., LazyDet [50], enforces a partial order on syn-

chronization operations. While it is generally not possible to predict

future synchronization operations executed by other threads, Lazy-

Det bypasses this challenge with speculation as mentioned earlier,

which leverages the same thread-level address-space isolationmech-

anism for memory-access determinism. Therefore, the only existing

DMT system that enforces a partial order on synchronization opera-

tions is deeply coupled with memory-access determinism, and there

is no known approach that can enforce synchronization determin-

ism only following a partial order without incurring the overhead

associated with memory-access determinism. In Section 5.1, we will

also argue in detail why it is challenging to design and implement

a synchronization-determinism-only system with a partial order.

Cost

S
ch

ed
u
le
-S
p
ac
e

R
ed

u
ct
io
n

1

2

3
4
5

Figure 1: The relative

comparison on cost and

schedule-space reduction

Figure 1 shows the relative com-

parison on cost and schedule-space

reduction of these �ve types of DMT

systems. Their relative positions on

cost are based on performance num-

bers reported in their original pa-

pers, as well as how easy it is to de-

ploy them. DMT systems of types

1© and 2© have similar performance

costs as they both only enforce syn-

chronization determinism, and they

only need to change the thread li-

brary for deployment. DMT systems

of types 3©, 4©, and 5© have similar performance costs as they all

enforce strong determinism, and they require more system-level

changes in the operating system or compiler for deployment.

The relative positions of di�erent types of DMT systems on

schedule-space reduction in Figure 1 are based on the following

reasoning. Strong determinism reduces the schedule space fur-

ther compared with non-stable synchronization determinism, as

strong determinism deterministically resolves each race. On the

other hand, stable synchronization determinism is comparable with

strong determinism in its capability of schedule-space reduction.

226

Understanding and Reaching the Performance Limit of Schedule Tuning on Stable Synchronization Determinism PACT ’22, October 10–12, 2022, Chicago, IL, USA

This has been argued by Yang et al. [62]. The major takeaway is that

although stable synchronization determinism does not necessarily

provide the mapping from one input to one schedule while facing

races as a strong determinism system does, it can still shrink the

number of possible schedules by using a small number of schedules

on all inputs. Further, synchronization determinism already greatly

constrains the interleaving space and signi�cantly reduces the num-

ber of remaining data races, e.g., Peregrine [28] reported at most 10

races in millions of shared memory accesses within an execution

after enforcing synchronization determinism, and these races will

not expand the number of possible schedules much. With sched-

ule stability, the extra bene�t of further enforcing memory-access

determinism is marginal and not worth the cost.

From the categorization and comparison results above, we con-

clude that stable totally-ordered synchronization determinism is

the most cost-e�ective DMT system design.

4 BENCHMARKS, PLATFORM, AND
METHODOLOGY

In this section, we describe the benchmarks and platform we use,

and we then present our methodology. As our work uses exist-

ing stable synchronization determinism systems, Parrot [26] and

QiThread [63], as the starting point, we �rst provide the necessary

background below.

4.1 Background on Parrot and QiThread

Parrot and QiThread share the same turn-based mechanism but

di�er in their scheduling policies for addressing the thread seri-

alization problem caused by a vanilla round-robin policy. Below,

we present the system architecture of Parrot, which is inherited

by QiThread, and describe Parrot annotations and QiThread

policies that are used to address the serialization problem. We only

discuss the parts that are relevant for understanding the scheduling

policies. For details on other aspects, please refer to the original

papers of Parrot and QiThread.

4.1.1 Overall Architecture. Figure 2 shows the DMT system archi-

tecture shared by Parrot and QiThread. The major components

include a deterministic user-space scheduler and a set of wrapper

functions for intercepting pthreads synchronization, network, and

timeout operations and handling scheduling annotations. The de-

terministic user-space scheduler only schedules synchronization

operations, and it delegates everything else to the underlying non-

deterministic OS-space scheduler. The wrapper functions interpose

function calls to a library dynamically loaded through LD_PRELOAD,

“trap” the function calls into the deterministic user-space scheduler,

and then delegate the actual implementation to pthreads or the

OS. Di�erent scheduling policies are implemented in the deter-

ministic user-space scheduler. We also leverage this DMT system

architecture to implement minSMT.

4.1.2 Parrot Scheduling Annotations. Parrot provides two sched-

uling annotations that programmers can use to improve perfor-

mance, i.e., a soft barrier and a performance critical section. The

deterministic user-space scheduler treats these scheduling annota-

tions as performance hints, as they are added for performance only

and can be ignored without hurting program correctness.

deterministic user-space scheduler DMT Runtime

synchronization network timeoutscheduling annotations

nondeterministic OS-space scheduler OS

Figure 2: The DMT system architecture shared by Parrot

and QiThread

The soft barrier is to help the deterministic scheduler to avoid

serializing parallel computations. In general, the soft barrier should

be used to align high-level, time-consuming computations that

should be executed in parallel, and it encourages the scheduler to

co-schedule a group of threads at the program point where the

annotation is added. The soft barrier operates like a barrier with a

deterministic timeout. Note that the timeout in the soft barrier is

made deterministic in Parrot by counting the number of turns.

The performance critical section (PCS) annotation is to annotate

a performance bottleneck when its overhead is so signi�cant that

it is worthwhile to trade determinism for performance. Once a

thread enters a section annotated with PCS, the runtime system

will delegate the thread to the nondeterministic OS scheduler. Since

the PCS annotation trades determinism for performance, it should

be used with caution.

4.1.3 QiThread Scheduling Policies. QiThread addresses the po-

tential serialization problem of the vanilla round-robin policy with

heuristic-based scheduling policies, and these policies leverage syn-

chronization semantics to schedule various synchronization opera-

tions di�erently. The performance goal of QiThread is to achieve

similar performance as Parrotwith the soft barrier but without the

PCS annotation. Evaluation shows that QiThread achieved its goal

without adding Parrot annotations and sometimes outperforms

Parrotwith soft barrier only, asQiThread can better align threads

beyond just those high-level, time-consuming computations. Specif-

ically, QiThread introduced the following �ve semantics-aware

scheduling policies:

BoostBlocked When a thread unblocks some other threads during

a turn, the threads that were just unblocked will get the turn

before the threads that are currently running.

CreateAll A thread executing pthread_create() in a loop will

be able to �nish the whole loop in one turn if the loop does

not contain other synchronization.

CSWhole A critical section will be scheduled as a whole, i.e., a

thread entering a critical section with the turn will pass the

turn only when it leaves the critical section.

WakeAMAP A thread executing an unblocking operation on con-

dition variables or semaphores will keep the turn and continue

executing until there are no more threads to be woken up on

the same condition variable or semaphore, or until the unblock-

ing thread gets blocked itself.

227

PACT ’22, October 10–12, 2022, Chicago, IL, USA Qi Zhao, Zhengyi Qiu, Shudi Shao, Xinning Hui, Hassan Ali Khan, and Guoliang Jin

BranchedWake This is an annotation that can be added in condi-

tional statements where only some branches contain synchro-

nization operations to balance the number of synchronization

operations in all branches.

4.2 Benchmarks and Platform

We use all the 108 programs used to evaluate Parrot andQiThread

in our work, which is the largest set of benchmarks used for evalu-

ating DMT systems in the literature. This set covers a good range

of parallel programming models and idioms, and it uses complete

software or benchmark suites to avoid potential biases in the eval-

uation. This set of programs includes 55 real-world programs, and

they are aget [1], Berkeley DB [8], MPlayer MEncoder [6], OpenL-

DAP [11], PBZip2 [5], pfscan [2], Redis [12], all 14 parallel image

processing utilities implemented in OpenMP from the ImageMagick

software suite [9], and all 33 parallel C++ STL algorithm implemen-

tations [7] also implemented in OpenMP. Since compression and

decompression in PBZip2 take very di�erent code paths, PBZip2 is

counted twice. The other 53 programs are from four widely used

benchmark suites, and they are 10 benchmarks in NPB [10]; 15 in

PARSEC [4]; 14 in Phoenix [54], where each algorithm has two

implementations, one using pthreads directly and the other using a

map-reduce library built atop pthreads; and 14 in SPLASH-2x [3].

The individual names of the 108 programs can be found in Figure 5.

We use a Dell Precision 5810 Tower workstation with a single

Intel Xeon E5-2695 V4 CPU and 64 GB memory. The CPU has 18

physical cores and 36 hyper-threading cores. Our machine con�g-

uration is comparable with the ones used for evaluating Parrot

and QiThread. On the software side, while we inherit many set-

tings, e.g., program workload, number of threads, and optimization

level, made available through Parrot and QiThread artifacts, our

machine is running Ubuntu 20.04 with Linux kernel version 5.4.0,

which requires us to migrate the public versions of Parrot and

QiThread available onGitHub to Ubuntu 20.04. During this process,

we also upgrade the PARSEC benchmark suite used for evaluation

from 2.0 to 3.0 and migrate necessary annotations added by Parrot.

All these artifacts, including the migrated Parrot and QiThread

and our own minSMT, are made available on GitHub [13].

4.3 Methodology

We follow an iterative process to understand overheads that are

oblivious to schedule tuning and design techniques to address the

remaining, scheduling-dependent overheads to reach the perfor-

mance limit of schedule tuning.

We �rst run programs in three environments, i.e., nondeter-

ministic execution, under Parrot, and under QiThread. Starting

from programs with a signi�cant overhead under a DMT system

compared with nondeterministic executions, we compare their syn-

chronization schedules to form hypotheses of possible scheduling-

oblivious overheads that cannot be eliminated by schedule tuning.

During this process, we also leverage our understanding of existing

DMT systems and insights from our categorization and comparison

results. To verify the hypotheses, we develop techniques to exclude

the impact of scheduling-oblivious overheads while evaluating the

performance overhead. Meanwhile, we try to address the remaining

overhead with new scheduling policies. If new policies are not suf-

�cient, it is possible that we are missing some scheduling-oblivious

overheads or need better policies.

We repeat this iterative process until our new scheduling poli-

cies are able to achieve similar performance as nondeterministic

executions after excluding scheduling-oblivious overheads. We con-

sider a program is a resolved case if our DMT system with new

policies has an extra overhead of no more than 3% after excluding

scheduling-oblivious overheads. To this end, we �nd two types of

scheduling-oblivious overheads with our new scheduling policies

and annotation implemented in minSMT.

In the next two sections, we present the scheduling-oblivious

overheads and our new scheduling policies and annotations.

5 SCHEDULING-OBLIVIOUS OVERHEADS

Through our iterative process, we �nd two types of scheduling-

oblivious overheads while enforcing stable synchronization deter-

minism. Below, we describe these two types of overheads, discuss

why they cannot be eliminated by schedule tuning, and design

techniques to exclude their impact while evaluating performance.

5.1 Totally-Ordered Synchronization

We consider totally-ordered synchronization as a scheduling-oblivious

overhead for stable synchronization determinism. From Section 3,

we can see that the only DMT system that enforces a partial order

is deeply coupled with memory-access determinism. To decouple

partially-ordered synchronization with memory-access determin-

ism, a DMT systemwill not be able to adopt the speculation strategy

as done by LazyDet, but it needs the capability of predicting future

synchronization operations that may be executed by other threads.

We next detail the need for such a predicting capability under

both logical-clock-based and round-robin-based policies. In the

case of a logical-clock-based policy, according to the partial order,

a thread could proceed to execute a synchronization as long as it

knows that it has the smallest logical clock among threads using

the same lock, but it is not necessary for the thread to have the

globally smallest logical clock given the goal to enforce a partial

order. In order to know this, the scheduler needs to predict what

other threads may execute from the time the thread wants to ex-

ecute a synchronization operation to the point when its logical

clock becomes the globally smallest. In the case of a round-robin-

based policy, each lock should be managed independently with

its own queue. When a DMT system passes a lock-speci�c turn

to the next thread, it needs to predict which thread will execute

a synchronization operation on the lock bound to the queue. As

pointed out by the authors of LazyDet, the capability of predicting

future synchronization operations that may be executed by other

threads is infeasible [50]. To put this argument more formally, we

leverage the halting problem.

Considering a programwith three threads, where all three threads

acquire/release the same lock, we put the halting problem before

the lock-acquisition statement in the second thread. At the moment

when the �rst thread executes the lock-release statement, if a stable

synchronization determinism scheduler that enforces partial order

wants to determine which thread to pass the turn to, the sched-

uler needs to solve the halting problem to decide whether the turn

228

Understanding and Reaching the Performance Limit of Schedule Tuning on Stable Synchronization Determinism PACT ’22, October 10–12, 2022, Chicago, IL, USA

should be given to the second or the third thread. In this way, we

reduce the problem of predicting future synchronization operations

in other threads to the halting problem.

With the discussion above, we conclude that a general scheduler

that can predict what synchronization operations other threads may

execute and decide which thread to pass the turn to does not exist,

and we consider totally-ordered synchronization as an overhead

that is oblivious to schedule tuning. With totally-ordered synchro-

nization, all synchronization operations will execute serially with

a total order. Re�ecting this to DMT system implementations, this

is because of the turn-based mechanism, where only one thread is

allowed to execute synchronization code at any given time.

Although we cannot eliminate the performance impact of totally-

ordered synchronization through schedule tuning, we can instead

measure this performance impact. Speci�cally, we develop a run-

time library that executes each synchronization operation in a

critical section protected by the same global lock, under which all

synchronization operations are Totally-Ordered but with a NonDe-

terministic order, and we name it as the TONDSync mode. During

performance evaluation, the overhead of programs running under

the TONDSync mode will be subtracted from the overhead of run-

ning under a stable synchronization determinism system. In this

way, we exclude the performance impact of totally-ordered syn-

chronization, as the subtracted performance overhead represents

the impact of totally-ordered but nondeterministic synchronization,

and the delta of performance overheads between a stable synchro-

nization determinism system and the TONDSync mode is caused

by the di�erent schedules of synchronization operations.

Fine-grained lockswill further enlarge the performance impact of

totally-ordered synchronization, regardless of how lock acquisition

and release statements are scheduled. Under QiThread, which

applies the CSWhole policy by default, all critical sections protected

by di�erent �ne-grained locks are essentially now protected by

one single lock, as only one critical section can execute at any

given time. However, even if we turn o� the CSWhole policy, the

performance may not get much better. Without CSWhole, a thread

that has acquired one �ne-grained lock has to wait for the turn

to pass around all other threads before it can execute the lock-

release statement. As critical sections protected by �ne-grained

locks are usually very short, the lock-release statement will then

need to wait for quite some time to get the turn, which is again a

signi�cant overhead. To exclude the performance impact of totally-

ordered synchronization enlarged by �ne-grained locks, we provide

an annotation, Critical Section protected with Fine-grained lock

(CSFine), to mark critical sections protected with �ne-grained locks.

Lock acquisition and release statements inside critical sections

marked by CSFine can be viewed as not intercepted by the runtime.

5.2 Workload-Length Imbalance

Another type of scheduling-oblivious overhead for stable synchro-

nization determinism is workload-length imbalance. While the

papers of Kendo, Parrot and QiThread have used the term “load

(im)balance,” they used it to refer to the phenomenon that di�er-

ent threads execute di�erent numbers of tasks. While such load

imbalance can be addressed by schedule tuning, as exempli�ed

1 void *thread_entry(void *args)

2 {

3 int id;

4 long local_sum = 0;

5 while (1) {

6 pthread_mutex_lock (&mutex);

7 if (task_idx < task_total)

8 id = task_idx ++;

9 else {

10 pthread_mutex_unlock (&mutex);

11 break;

12 }

13 pthread_mutex_unlock (&mutex);

14

15 long iter_num = task_len[id];

16 for (int i = 0; i < iter_num; i++)

17 local_sum += i*i*i;

18 }

19 ...

20 return NULL;

21 }

Figure 3: An example illustratingworkload-length imbalance

by the aforementioned papers, the overhead caused by workload-

length imbalance cannot, and hence a scheduling-oblivious over-

head. Workload-length imbalance in the context of stable synchro-

nization determinism is also di�erent from CoreDet’s “quantum

length imbalance” problem, where a “quantum” is a time slice of ar-

bitrary length determined by CoreDet [16], while workload length

refers to the code region between two synchronization operations.

Figure 3 shows an example to illustrate the concept of workload-

length imbalance. In this example, each thread �rst enters a critical

section (lines 6 to 13) to get an index and store it in variable id

(line 8), which is then used to index into the task_len array to

get iter_num (line 15). With QiThread’s CSWhole policy, the two

synchronization operations for lock acquisition and release will be

scheduled in one turn, and threads in the program will execute the

critical section in a round-robin fashion. After getting a task from

the array, each thread then executes its computation, the length of

which is speci�ed by the value of iter_num.

The task_len array is initialized based on an input �le, which

essentially stores some pre-initialized task lengths. When all task

lengths are initialized with the same value L, the overhead of run-

ning the program con�gured with 32 threads under QiThread

on our platform compared with nondeterministic execution under

vanilla pthreads is 13.06%. This overhead is not close to 0% as the

execution time of the for loop (lines 16 and 17) still varies even

with the same iter_num. We refrain from using more complex code

to achieve the exact same execution time for the simplicity of our

example. When we initialize the task lengths with some imbalance,

the overhead will increase. For example, if we initialize each task

length with two di�erent values L and 3Lwith a probability of 15/16

and 1/16 respectively, the overhead is 136.04%.

Figure 4 uses four threads to illustrate why the overhead in-

creases with workload-length imbalance. Note that in our measure-

ment the length of the computation and the length of the critical

section is comparable. Since QiThread schedules each critical sec-

tion as a whole in a round-robin fashion, the �rst computation task

in the second thread, which is longer than others, leads to extra

waiting in the other three threads.

229

PACT ’22, October 10–12, 2022, Chicago, IL, USA Qi Zhao, Zhengyi Qiu, Shudi Shao, Xinning Hui, Hassan Ali Khan, and Guoliang Jin

CSC
O
M
P
-L

CSC
O
M
P
-L

CS

CSC
O
M
P
-L

CSC
O
M
P
-L

CS

CSC
O
M
P
-L

CSC
O
M
P
-L

CS

CSC
O
M
P
-L

CSC
O
M
P
-L

CS

(a) All computation tasks of
the same length

CSC
O
M
P
-L

CSC
O
M
P
-L

CS

CS

C
O
M
P
-3
L

CSC
O
M
P
-L

CSC
O
M
P
-L

CSC
O
M
P
-L

CSC
O
M
P
-L

CSC
O
M
P
-L

CS

CS

CS

W
A
IT
IN
G

W
A
IT
IN
G

W
A
IT
IN
G

(b) The length of one com-
putation task is three times

of others

Figure 4: Illustration of how workload-length imbalance

leads to a larger overhead

This overhead is scheduling oblivious under the context of stable

synchronization determinism, and that is because if the synchro-

nization scheduler takes execution time into account, the result-

ing DMT system will be non-stable. Previous logical-clock-based

DMT systems [16, 52] discussed this overhead, and argued that

logical-clock-based policies would reduce overhead when encoun-

tered execution patterns similar to this workload-length imbalance.

Indeed, if we use logical-clock-based scheduling policies on the

example in Figure 4, and the logical-clock is well-established so

that it tracks the real execution time closely, we may not su�er from

the problem of workload-length imbalance, but they will allow all

permutations of thread orders and result in many di�erent sched-

ules with di�erent program inputs. To provide schedule stability,

we would like the DMT system to use the same schedule under dif-

ferent inputs as long as the synchronization operations executed by

each thread remain the same. Therefore, a stable synchronization

determinism system will use the same schedule for di�erent inputs

for the example in Figure 4. This results in an overhead caused by

workload-length imbalance, but the number of schedules becomes

one and is signi�cantly reduced. Therefore, we can consider sched-

ule stability as a trade-o� between performance and reliability, and

workload-length imbalance is a scheduling-oblivious overhead as

the result of providing schedule stability.

Essentially, as stable synchronization determinism aims to use

the same schedule for many di�erent inputs, it will naturally en-

counter inputs with di�erent levels of workload-length imbalance,

which requires di�erent strategies to optimize. As programmers

generally aim to divide workload evenly, workloads without length

imbalance are the most general case. If we hard-code an optimized

schedule for the input with workload-length imbalance, the sched-

ule will then lead to extra overhead for inputs without workload-

length imbalance. Together with the challenge of recognizing im-

balanced workload length patterns, both Parrot and QiThread

currently optimize for workloads without length imbalance, mak-

ing workload-length imbalance a scheduling-oblivious overhead of

stable synchronization determinism.

To exclude the performance impact of workload-length imbal-

ance while evaluating the overhead of stable synchronization deter-

minism systems, we will �rst use the synchronization logs gener-

ated by the runtime system to recognize major computation tasks

leveraging the timestamps of synchronization operations. We then

pro�le the length of these computation tasks to get the maximum

length for each computation task. Finally, we use a runtime library

to add delays to the end of each dynamic computation-task instance

and make all instances of the same task the same length, i.e., 1.1× of

the maximum length previously pro�led. During evaluation, such

delays will be added to all execution environments being compared

when we need to exclude the impact of workload-length imbalance.

For the example in Figure 3, the pro�led maximum length will

be di�erent when the two di�erent inputs are used. In either case,

once we insert delay as described above, the program running under

QiThread has a negligible, close to 0% overhead compared with

nondeterministic execution. Note that the delay will be added for

both nondeterministic execution and deterministic execution.

6 MINSMT DESIGN AND IMPLEMENTATION

While trying to understand the performance overheads after exclud-

ing the two scheduling-oblivious ones, we �nd a few benchmarks

not reaching the performance limit under QiThread. This guides

our e�orts in analyzing these benchmarks and identifying more op-

portunities to better align threads with one more scheduling policy

and one more scheduling annotation. We also identify a minor op-

timization over QiThread. Next, we present our proposed policies

and annotations and describe our implementation, minSMT.

6.1 New Policies and Annotation

WakeAMAP+: An Improved WakeAMAP. As described in Sec-

tion 4.1.3, the WakeAMAP policy in QiThread allows a thread that

performs a wake-up operation on a condition variable or semaphore

to continue holding the turn and wake up as many blocked threads

on the same synchronization variable as possible. This policy is

useful, especially in programs that use producer-consumer queues.

In our study, we �nd that WakeAMAP is not able to cover the fol-

lowing two scenarios while aligning consumer threads, and our

improved policy, WakeAMAP+, �xes such de�ciencies.

First, di�erent consumers could wait on di�erent synchroniza-

tion variables, i.e., there is an array of condition variables, and each

of them is used to synchronize one consumer with the producers.

In a program where these consumers are blocked on the same static

statement but on di�erent synchronization variables, WakeAMAP+

will allow the producers to keep the turn and continue execution

to wake up as many of those blocked consumers as possible. The

multiple consumers being woken up together are better aligned.

Secondly, there could bemultiple producers in a producer-consumer

queue, and WakeAMAP+ will let all the producers take turns to

wake up consumers. Then, once a producer executes a woken-up

operation,WakeAMAP+ will pass the turn around producers. Once

there is no more consumer that can be woken up with the same

static statement executed by di�erent producer threads, the turn

will then be passed around all threads as normal.

In both scenarios described above, to recognize all producers,

minSMT will use the child thread entry function pointer passed

230

Understanding and Reaching the Performance Limit of Schedule Tuning on Stable Synchronization Determinism PACT ’22, October 10–12, 2022, Chicago, IL, USA

to pthread_create() as the role of the thread being created. In

the case where a thread pool is used, we provide an annotation to

recognize the address of the function being executed in a thread.

With the role information, producers are threads sharing the same

role as a thread that just previously executed a woken-up operation.

An Extended-Turn Annotation. An extended turn identi�es a

code region containing multiple synchronization operations, the

group of which when scheduled as a whole can improve perfor-

mance. In Figure 3, each thread contains a loop that �rst gets a task

and processes the task in each iteration. Now imagine a di�erent

program with the same structure but the logic to get a task involves

a varied number of synchronization operations. Then the computa-

tion serialization problem could happen. With the extended-turn

annotation, we ask the scheduler to execute the code logic that gets

a task in one turn, and this will solve the serialization problem.

The extended-turn annotation essentially groups multiple syn-

chronization operations that are executed in a high-level operation,

e.g., getting a task from a synchronized queue, and treats the high-

level operation as one synchronization operation regardless of how

many synchronization operations are actually executed. This anno-

tation is very useful to align threads executing code that contains a

computation-intensive loop and each iteration in the loop contains

a mixture of computation and synchronization.

NoChildNoDMT. As its name suggests, the NoChildNoDMT pol-

icy turns on determinism enforcement only after the main thread

creates the �rst child thread. While this is a straightforward policy,

it is not included in Parrot and QiThread, and some of the 108

benchmarks can bene�t from this policy signi�cantly. These bench-

marks have a very large number of synchronization initialization

statements that are intercepted before any child threads are created,

and their execution times are very short.

6.2 Implementation

minSMT is implemented on top of QiThread, which is in turn im-

plemented on top of Parrot. As QiThread is implemented on top

of Parrot and keeps all the functionalities of Parrot, QiThread

can be viewed as a superset of Parrot, and minSMT also keeps all

the functionalities of Parrot and QiThread. Options for turning

on and o� di�erent policies and functionalities can be controlled

through a con�guration �le.

The delta between minSMT and QiThread includes three ma-

jor pieces: (1) the new WakeAMAP+ policy, which is implemented

following QiThread’s WakeAMAP policy but with extra code to

recognize thread roles and track unblocking and blocking threads on

condition variables and semaphores; (2) the extended-turn annota-

tion provides two APIs, ext_turn_begin() and ext_turn_end(),

to mark the code region to be executed in the extended turn, and it

also has extra code in get_turn() and put_turn(), which are two

interfaces inherited from Parrot, when the extended-turn annota-

tion is encountered; (3) turning on determinism synchronization

enforcement on the �rst pthread_create().

For the purpose of excluding scheduling-oblivious overheads,

minSMT also includes the CSFine annotation for marking critical

sections protected by �ne-grained locks and three more modes: (1)

TONDSyncmode, where the runtime only provides totally-ordered

nondeterministic synchronization by executing each synchroniza-

tion operation in a critical section protected by the same global

lock; (2) a pro�ling mode to pro�le task lengths; and (3) a delaying

mode where each task will be padded with delay to exclude the

performance impact of workload-length imbalance.

7 EVALUATION

As described in Section 4.3, we follow an iterative process to under-

stand and reach the performance limit of stable synchronization

determinism with the 108 benchmarks described in Section 4.2.

For each benchmark, we measure the execution times under �ve

di�erent environments, nondeterministic executions under vanilla

pthreads, TONDSync, Parrot, QiThread, and minSMT. We run a

benchmark 30 times under each environment and take the average.

Following the state-of-the-practice in performance evaluation of

DMT systems, we do not intentionally control program execution to

trigger nondeterministic behavior, under which nondeterministic

behavior is possible but rare as in the real-world scenario. For

Parrot performance, we add all soft barriers as designated in the

Parrot reproducing package. Following the practice of QiThread

evaluation [63], we do not add the PCS annotations from Parrot as

they introduce nondeterminism. For QiThread performance, we

turn on all �ve policies that come with QiThread, as QiThread

evaluation [63] shows that it reaches the best performance with

all policies turned on. For minSMT performance, we turn on all

new policies and add the extended-turn annotations if applicable.

Currently, the extended-turn annotation is added at one location

in splash2x cholesky, two locations in parsec freqmine-openmp,

three locations in parsec x264, and six locations in parsec ferret. We

normalize all execution times to nondeterministic execution times

under vanilla pthreads.

Below, we �rst present our detailed results on evaluatingwhether

and how well minSMT can reach the performance limit of schedule

tuning on stable synchronization determinism, and then we com-

pare minSMT performance with Parrot and QiThread, focusing

on benchmarks that minSMT reduces overhead signi�cantly. Lastly,

we present the complete set of normalized execution times under

di�erent execution environments.

7.1 Evaluation of Performance Limit

With the scheduling-oblivious overheads and design of minSMT

presented in the previous sections, we consider thatminSMT reaches

the performance limit of schedule tuning if it has no more than 3%

extra overhead after excluding the impact of scheduling-oblivious

overheads. On the 108 benchmarks used for evaluation, we show

that the performance limit is reached on all but one of them.

To determine whether minSMT can reach the performance limit

on a speci�c benchmark, we �rst compare theminSMT performance

overhead number with TONDSync performance overhead num-

ber, where performance overhead numbers are normalized against

nondeterministic execution times under vanilla pthreads, and we

conclude thatminSMT reaches the performance limit if theminSMT

performance overhead number is no more than TONDSync perfor-

mance overhead number plus 3%. Among these 108 benchmarks,

86 of them are considered as reaching the performance limit after

comparing their minSMT and TONDSync performance overhead

231

PACT ’22, October 10–12, 2022, Chicago, IL, USA Qi Zhao, Zhengyi Qiu, Shudi Shao, Xinning Hui, Hassan Ali Khan, and Guoliang Jin

Table 2: Detailed evaluation results of excluding the impact of scheduling-oblivious overheads on 22 benchmarks. All numbers

are performance overhead compared with nondeterministic executions under vanilla pthreads.

Name TONDSync minSMT Delta
Add CSFine Add delay

CSFine TONDSync minSMT # Delays TONDSync minSMT

npb ua-l 11470.57% 20048.41% 8577.84% 27 104.56% 105.62% - - -
parsec �uidanimate 7215.59% 8985.36% 1769.78% 5 75.88% 78.03% - - -
parsec ferret 168.63% 993.16% 824.53% - - - 4 0.12% 0.09%
splash2x raytrace 78.70% 481.13% 402.43% 1 3.13% 199.17% 1 0.58% 1.19%
parsec x264 75.22% 442.61% 367.39% - - - 2 0.29% 2.80%
splash2x fmm 41.68% 371.64% 329.96% 10 3.48% 3.03% - - -
parsec freqmine-openmp 0.30% 128.81% 128.51% - - - 1 0.03% 1.84%
parsec vips -0.95% 67.48% 68.43% 5 -0.32% 67.39% 1* 0.13% 1.22%
parsec dedup 11.83% 76.33% 64.50% 1 10.24% 63.77% 3 1.12% 3.64%
splash2x volrend 42.94% 92.92% 49.98% 2 -6.39% -15.35% - - -
phoenix string_match 15.98% 44.65% 28.66% - - - 1 10.13% 6.88%
phoenix kmeans 4.51% 32.93% 28.41% - - - 1 4.76% 4.11%
phoenix word_count 14.93% 39.35% 24.41% - - - 3 0.81% 2.05%
phoenix pca 12.82% 33.72% 20.90% - - - 3 25.62% 27.44%
splash2x cholesky 51.22% 72.10% 20.88% 2 48.57% 70.09% 1 15.68% 12.14%
parsec facesim -4.33% 15.81% 20.14% 5 -7.87% -9.02% - - -
splash2x barnes 183.37% 202.64% 19.28% 1 3.53% 3.68% - - -
phoenix histogram 33.91% 53.04% 19.14% - - - 1 1.84% 1.17%
parsec streamcluster -6.21% 6.84% 13.05% - - - 2 7.03% 8.58%
phoenix linear_regression 22.38% 32.79% 10.40% - - - 1 0.84% 0.13%
pbzip2 ‘decompress’ 2.49% 10.52% 8.03% - - - 1 6.91% 8.45%
splash2x water_nsquared 0.32% 6.41% 6.09% 3 -0.11% -0.23% - - -

numbers, and we do not further exclude the impact of scheduling-

oblivious overheads caused by �ne-grained locks and workload-

length imbalance on these cases.

For the remaining 22 benchmarks, Table 2 shows the results of

further excluding scheduling-oblivious overheads caused by �ne-

grained locks and workload-length imbalance. For each benchmark

whose minSMT overhead is more than TONDSync overhead plus

3%, we list its TONDSync overhead, minSMT overhead, and their

delta, i.e., minSMT overhead minus TONDSync overhead. Our goal

is to fully exclude the impact of the scheduling-oblivious over-

heads and have minSMT fully eliminate the remaining scheduling-

dependent overheads through schedule tuning. In the ideal case,

the performance overheads of TONDSync and minSMT should be

very close after excluding the impact of the scheduling-oblivious

overheads with necessary CSFine annotations and delays added.

Currently, we �rst add CSFine annotations and then delays, and

we stop further excluding the impact of scheduling-oblivious over-

heads after seeing minSMT has an extra overhead of less than 3%

compared with TONDSync.

Among these 22 benchmarks in Table 2, 11 of them use �ne-

grained locks, and we annotate critical sections protected by �ne-

grained locks with the CSFine annotation. We list the numbers of

CSFine annotations being added, and we report the overhead num-

bers under TONDSync and minSMT after these CSFine annotations

are added. After adding CSFine annotations, 7 more benchmarks are

considered as reaching the performance limit, as the extra overhead

of minSMT is less than 3% compared with TONDSync.

For the remaining 15 benchmarks, we further add delays to ex-

clude the performance impact of workload-length imbalance. We

manually examine the synchronization logs generated by the DMT

runtime system to recognize computation tasks. If workload-length

imbalance is found, we add delays to such tasks. In 14 benchmarks,

it is easy to identify the task boundaries and add delays. In the

remaining case, i.e., parsec vips, computation is expressed using

recursion with synchronization in the middle. For this case, we

have to �rst mark a critical section protected by a global lock in-

side recursion with the CSFine annotation, and then we can mark

task boundaries and add delays. We list the numbers of locations

where delays are added, and we report the overhead numbers un-

der TONDSync and minSMT after delays are added. After adding

delays, the 14 benchmarks are considered as reaching the perfor-

mance limit. Although minSMT can also reach an extra overhead

less than 3% on parsec vips, we do not consider it a case where

we can determine whether minSMT reaches the performance limit.

This is because the CSFine annotation is added on a critical sec-

tion not protected by �ne-grained locks but a global lock, and we

mark the number of delays for parsec vips with ‘*’ to indicate the

exceptional use of CSFine.

From the analysis above, we conclude that the performance limit

is reached, e.g., no more than 3% extra overhead after excluding

all scheduling-oblivious overheads, on all but one of the bench-

marks. For the 107 programs reaching the performance limit under

minSMT, 57 programs have less than 3% overhead compared with

vanilla pthreads execution, 28 have an overhead between 3% and

10%, 14 have an overhead between 10% and 100%, and 8 have more

than 100% overhead. For the remaining benchmark, parsec vips,

the current performance overhead under minSMT is 67.48%, and

we identify the programming pattern that is challenging for us to

determine whether minSMT reaches the performance limit.

7.2 Performance Comparison

We next discuss the performance of minSMTwithout excluding the

impact of scheduling-oblivious overheads and compare it with the

performance of Parrot and QiThread on all the 108 benchmarks.

The results are shown in Figure 5. All performance numbers are

normalized to nondeterministic execution time.

QiThread has already established that it can achieve similar or

better performance compared with Parrot with soft barrier but

without PCS annotations in most cases [63], and our reproduced

232

Understanding and Reaching the Performance Limit of Schedule Tuning on Stable Synchronization Determinism PACT ’22, October 10–12, 2022, Chicago, IL, USA

19

21
Parrot

QiThread

TONDSync

minSMT

bt-l
cg-l

dc-l*
ep-l

�-l is-l
lu-l

mg-l
sp-l

blackscholes

blackscholes-openmp

bodytrack

bodytrack-openmp

canneal

dedup
facesim

ferret*
freqmine-openmp

rtview
raytrace

streamcluster

swaptions

vips
x264*

2

4

6

8

10

12

NPB 3.3.1 PARSEC

ua-l
�uidanimate

1

10

100

200

16 16

18 18

histogram

histogram-pthread

kmeans*

kmeans-pthread

linear regression

linear regression-pthread

matrix multiply

matrix multiply-pthread*

pca*
pca-pthread

string match

string match-pthread

word count*

word count-pthread

barnes
cholesky

� fmm
lu cb

lu ncb
ocean cp

ocean ncp

radiosity

radix
raytrace

volrend

water nsquared

water spatial

2 2

4 4

6 6

PHOENIX SPLASH-2x

pbzip2 compress

pbzip2 decompress

aget
pfscan

bdb rep bench3n

ldap
mencoder

redis
compare

compare channel red

compare compose

convert blur

convert charcoal e�ect

convert draw

convert edge detect

convert �

convert paint e�ect

convert sharpen

convert shear

mogrify resize

mogrify segment

montage

0 0

2 2

Real World Programs ImageMagick

accumulate

adjacent di�erence

adjacent �nd not found

count
count if

equal
�nd �rst of not found

�nd if not found

�nd not found

for each

generate

inner product

lexicographical compare

max element

merge
min element

0 0

2 2

STL libstdc++-v3

mismatch

nth element

partial sort

partial sum

partition

random
shu�e

replace if

search n not found

search not found

set di�erence

set intersection

set symmetric di�erence

set union

sort*
stable sort*

transform

unique copy

0 0

2 2

STL libstdc++-v3

Figure 5: Execution times of 108 benchmarks under Parrot, QiThread, TONDSync, and minSMT. All numbers are normalized

based on nondeterministic execution times. Benchmarks that bene�t signi�cantly from minSMT compared with QiThread are

marked with ‘*’. The charts for NPB ua-l and PARSEC �uidanimate use a logarithmic scale, and others use a linear scale.

233

PACT ’22, October 10–12, 2022, Chicago, IL, USA Qi Zhao, Zhengyi Qiu, Shudi Shao, Xinning Hui, Hassan Ali Khan, and Guoliang Jin

Table 3: 9 benchmarks that minSMT performs signi�cantly

better than QiThread. All numbers are performance over-

head numbers compared with nondeterministic executions

under vanilla pthreads.

Name Parrot QiThread minSMT What helps
npb dc-l 7.78% 16.54% -10.37% WakeAMAP+

parsec ferret 1117.28% 1917.98% 993.16% Extended-Turn
parsec x264 455.90% 503.40% 442.61% Extended-Turn
phoenix kmeans 56.23% 70.43% 32.93% WakeAMAP+

phoenix matrix_multiply-pthread 60.09% 60.14% 4.36% NoChildNoDMT

phoenix pca 349.96% 59.15% 33.72% WakeAMAP+

phoenix word_count 97.65% 129.24% 39.35% WakeAMAP+

stl sort 65.97% 65.60% 0.07% NoChildNoDMT

stl stable_sort 49.26% 49.52% -0.45% NoChildNoDMT

results can con�rm it. Therefore, we focus on the comparison be-

tween minSMT and QiThread, i.e., how many benchmarks can

bene�t from new policies inminSMT, and whether the performance

of any benchmarks is hurt.

To understand how many benchmarks can bene�t from new

policies and annotations in minSMT, we normalize minSMT execu-

tion times to QiThread execution times. On average, minSMT has

a speedup of 2.80% over QiThread. 9 benchmarks have minSMT

execution times less than 90% of QiThread execution times, and

the average speedup is 29.33%. We consider that minSMT reaches a

signi�cant performance improvement compared with QiThread

in these cases. Table 3 lists the performance overheads of Parrot,

QiThread, and minSMT of these 9 cases compared with nondeter-

ministic executions under vanilla pthreads.

On these 9 benchmarks, we can see from the numbers in Table 3

that minSMT greatly reduces the performance overhead of stable

synchronization determinism compared with both QiThread and

Parrot. Three benchmarks, npb dc-l, stl sort, and stl stable_sort,

now even have less than 1% overhead. For each case, we also list the

minSMT design that helps to achieve the speedup. We can see that

each new design in minSMT is bene�cial. For these 9 benchmarks,

numbers in Table 3 suggest that Parrot and QiThread cannot

reach the performance limit as minSMT does.

Note that npb dc-l in Table 3, together with 6 other programs,

enjoys more than 10% speedup against vanilla pthreads execution.

This type of speedup is also observed in QiThread and Parrot

results on a similar set of programs. The reason is that Parrot

includes a more e�cient wait implementation utilizing a spin-lock

phase. Deterministic schedules can also reduce contention and

context-switches, and they may improve a�nity. As our minSMT

library is based on Parrot, we inherit these performance bene�ts.

Using the same normalized execution times, we also check how

many benchmarks are hurt by new policies inminSMT. In no bench-

marks do minSMT execution times exceed 110% of QiThread exe-

cution times. Therefore, we consider that minSMT does not hurt

any benchmarks signi�cantly compared with QiThread. Only two

benchmarks, pfscan and mplayer encoder, have minSMT execution

times between 103% and 110% of QiThread execution times. Specif-

ically, pfscan is at 106.27% and mplayer encoder is at 105.12%. This

is due to the extra overhead from the WakeAMAP+ policy when

tracking the caller addresses of all pthread_cond_wait/signal calls,

which is currently implemented using a costly stack unwinding

to avoid changing the benchmark source code, and this overhead

outweighs the bene�ts for these two programs. However, both

QiThread and minSMT lead to speedup but not slowdown in these

two benchmarks. A more performing implementation that instru-

ments the source code to pass the caller address to the library at

each pthread_cond_wait/signal call would likely reduce or eliminate

these slowdowns. In addition, 10 benchmarks have their minSMT

execution times within 100% to 103% of QiThread execution times,

and we consider these di�erences insigni�cant.

From these results, we conclude that minSMT can generally

improve performance compared with state-of-the-art stable syn-

chronization determinism systems.

7.3 Discussion

Based on our results, we conclude that our identi�ed scheduling-

oblivious overheads and our proposed minSMT together success-

fully achieve the goal of understanding and reaching the perfor-

mance limit of stable synchronization determinism on almost all

benchmarks we evaluate. The challenge of the remaining bench-

mark is caused by one speci�c code pattern of using synchroniza-

tion inside recursive function calls. Future work may design code

refactoring tools to make programs with such code pattern more

suitable for stable synchronization determinism.

Our results show that minSMT can still exhibit high performance

overhead on some benchmarks where we consider that minSMT

reaches the performance limit of stable synchronization determin-

ism. To further improve the performance of stable synchronization

determinism in those cases, future work needs to propose solutions

to tackle the scheduling-oblivious overheads through approaches

other than schedule tuning.

To eliminate the overhead of totally-ordered synchronization,

one possibility to enable partial-order enforcement without spec-

ulation is to provide an annotation system, which will allow pro-

grammers or program analyses to communicate with the scheduler

on what synchronization operations will be executed by threads

in the future. If such a system is built, we need to further evalu-

ate its determinism guarantee and schedule stability. To eliminate

workload-length imbalance, one may build some code refactoring

tools to make workload length more balanced. We could also use

a previously proposed idea, i.e., schedule memorization and relax-

ation [27, 28], but we now need to further consider the workload

length while forming schedule reuse conditions. We leave these

ideas for future work.

8 CONCLUSION

In this paper, we �rst categorize and compare existing DMT runtime

systems along three axes and conclude that stable synchronization

determinism is the most cost-e�ective design. We then focus on un-

derstanding and reaching the performance limit of schedule tuning

on stable synchronization determinism. We identify two types of

scheduling-oblivious overheads and design a new system, minSMT,

to address most of the remaining scheduling-dependent overheads.

Evaluation on 108 benchmarks shows that minSMT can reach the

performance limit of schedule tuning on stable synchronization

determinism in all but one of the cases. Compared with state-of-

the-art stable synchronization determinism systems, minSMT can

improve the performance in many benchmarks signi�cantly.

234

Understanding and Reaching the Performance Limit of Schedule Tuning on Stable Synchronization Determinism PACT ’22, October 10–12, 2022, Chicago, IL, USA

REFERENCES
[1] 2009. Aget. http://www.enderunix.org/aget/.
[2] 2010. pfscan. http://freshmeat.sourceforge.net/projects/pfscan.
[3] 2012. SPLASH-2x. http://parsec.cs.princeton.edu/parsec3-doc.htm.
[4] 2012. The PARSEC Benchmark Suite. http://parsec.cs.princeton.edu/.
[5] 2016. Parallel BZIP2 (PBZIP2). https://launchpad.net/pbzip2.
[6] 2017. MPlayer. http://www.mplayerhq.hu/design7/news.html.
[7] 2017. STL Parallel Mode. http://gcc.gnu.org/onlinedocs/libstdc++/manual/

parallel_mode.html.
[8] 2018. Berkeley DB. https://www.oracle.com/database/technologies/related/

berkeleydb.html.
[9] 2018. ImageMagick. http://www.imagemagick.org/script/index.php.
[10] 2018. NASA Parallel Benchmarks. http://www.nas.nasa.gov/software/npb.html.
[11] 2018. OpenLDAP. http://www.openldap.org/.
[12] 2018. Redis. http://redis.io/.
[13] 2022. minSMT. https://github.com/chyiz/minSMT/.
[14] Gautam Altekar and Ion Stoica. 2009. ODR: Output-deterministic Replay for

Multicore Debugging. In Proceedings of the ACM SIGOPS 22Nd Symposium on
Operating Systems Principles (Big Sky, Montana, USA) (SOSP ’09). Association for
Computing Machinery, New York, NY, USA, 193–206. https://doi.org/10.1145/
1629575.1629594

[15] Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford. 2010. E�cient
System-enforced Deterministic Parallelism. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation (Vancouver, BC,
Canada) (OSDI’10). USENIX Association, Berkeley, CA, USA, 193–206. http:
//dl.acm.org/citation.cfm?id=1924943.1924957

[16] Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and Dan Grossman.
2010. CoreDet: A Compiler and Runtime System for Deterministic Multithreaded
Execution. In Proceedings of the Fifteenth Edition of ASPLOS on Architectural
Support for Programming Languages and Operating Systems (Pittsburgh, Pennsyl-
vania, USA) (ASPLOS XV). Association for Computing Machinery, New York, NY,
USA, 53–64. https://doi.org/10.1145/1736020.1736029

[17] Tom Bergan, Joseph Devietti, Nicholas Hunt, and Luis Ceze. 2011. The Deter-
ministic Execution Hammer: How Well Does it Actually Pound Nails?. In The
2nd Workshop on Determinism and Correctness in Parallel Programming (Newport
Beach, California, USA) (WODET ’11).

[18] Tom Bergan, Nicholas Hunt, Luis Ceze, and Steven D. Gribble. 2010. Deterministic
Process Groups in dOS. In Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation (Vancouver, BC, Canada) (OSDI’10). USENIX
Association, Berkeley, CA, USA, 177–191. http://dl.acm.org/citation.cfm?id=
1924943.1924956

[19] Emery D. Berger, Ting Yang, Tongping Liu, and Gene Novark. 2009. Grace: Safe
Multithreaded Programming for C/C++. In Proceedings of the 24th ACM SIGPLAN
Conference on Object Oriented Programming Systems Languages and Applications
(Orlando, Florida, USA) (OOPSLA ’09). Association for Computing Machinery,
New York, NY, USA, 81–96. https://doi.org/10.1145/1640089.1640096

[20] Guy E. Blelloch. 1993. NESL: A Nested Data-Parallel Language (Version 2.6).
Technical Report. Pittsburgh, PA, USA.

[21] Robert L. Bocchino and Vikram S. Adve. 2011. Types, Regions, and E�ects for
Safe Programming with Object-Oriented Parallel Frameworks. In Proceedings of
the 25th European Conference on Object-Oriented Programming (Lancaster, UK)
(ECOOP’11). Springer-Verlag, Berlin, Heidelberg, 306–332. https://doi.org/10.
1007/978-3-642-22655-7_15

[22] Robert L. Bocchino, Jr., Vikram S. Adve, Sarita V. Adve, and Marc Snir. 2009.
Parallel ProgrammingMust Be Deterministic by Default. In Proceedings of the First
USENIX Conference on Hot Topics in Parallelism (Berkeley, California) (HotPar’09).
USENIX Association, Berkeley, CA, USA. http://dl.acm.org/citation.cfm?id=
1855591.1855595

[23] Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen
Heumann, Rakesh Komuravelli, Je�rey Overbey, Patrick Simmons, Hyojin Sung,
and Mohsen Vakilian. 2009. A Type and E�ect System for Deterministic Parallel
Java. In Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented
Programming Systems Languages and Applications (Orlando, Florida, USA) (OOP-
SLA ’09). Association for Computing Machinery, New York, NY, USA, 97–116.
https://doi.org/10.1145/1640089.1640097

[24] Robert L. Bocchino, Jr., Stephen Heumann, Nima Honarmand, Sarita V. Adve,
Vikram S. Adve, AdamWelc, and Tatiana Shpeisman. 2011. Safe Nondeterminism
in a Deterministic-by-default Parallel Language. In Proceedings of the 38th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(Austin, Texas, USA) (POPL ’11). Association for Computing Machinery, New
York, NY, USA, 535–548. https://doi.org/10.1145/1926385.1926447

[25] Heming Cui, Rui Gu, Cheng Liu, Tianyu Chen, and Junfeng Yang. 2015. Paxos
Made Transparent. In Proceedings of the 25th Symposium on Operating Systems
Principles (Monterey, California) (SOSP ’15). Association for Computing Machin-
ery, New York, NY, USA, 105–120. https://doi.org/10.1145/2815400.2815427

[26] Heming Cui, Jiri Simsa, Yi-Hong Lin, Hao Li, Ben Blum, Xinan Xu, Junfeng Yang,
Garth A. Gibson, and Randal E. Bryant. 2013. Parrot: A Practical Runtime for
Deterministic, Stable, and Reliable Threads. In Proceedings of the Twenty-Fourth

ACM Symposium on Operating Systems Principles (Farminton, Pennsylvania)
(SOSP ’13). Association for Computing Machinery, New York, NY, USA, 388–405.
https://doi.org/10.1145/2517349.2522735

[27] Heming Cui, Jingyue Wu, John Gallagher, Huayang Guo, and Junfeng Yang.
2011. E�cient Deterministic Multithreading Through Schedule Relaxation. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles
(Cascais, Portugal) (SOSP ’11). Association for Computing Machinery, New York,
NY, USA, 337–351. https://doi.org/10.1145/2043556.2043588

[28] Heming Cui, Jingyue Wu, Chia-Che Tsai, and Junfeng Yang. 2010. Stable De-
terministic Multithreading Through Schedule Memoization. In Proceedings of
the 9th USENIX Conference on Operating Systems Design and Implementation
(Vancouver, BC, Canada) (OSDI’10). USENIX Association, Berkeley, CA, USA,
207–221. http://dl.acm.org/citation.cfm?id=1924943.1924958

[29] Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark Oskin. 2009. DMP: Deter-
ministic Shared Memory Multiprocessing. In Proceedings of the 14th International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems (Washington, DC, USA) (ASPLOS XIV). Association for Computing
Machinery, New York, NY, USA, 85–96. https://doi.org/10.1145/1508244.1508255

[30] Joseph Devietti, Jacob Nelson, Tom Bergan, Luis Ceze, and Dan Grossman.
2011. RCDC: A Relaxed Consistency Deterministic Computer. In Proceedings
of the Sixteenth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (Newport Beach, California, USA) (AS-
PLOS XVI). Association for Computing Machinery, New York, NY, USA, 67–78.
https://doi.org/10.1145/1950365.1950376

[31] Zhenyu Guo, Chuntao Hong, Mao Yang, Dong Zhou, Lidong Zhou, and Li Zhuang.
2014. Rex: Replication at the Speed of Multi-Core. In Proceedings of the Ninth
European Conference on Computer Systems (Amsterdam, The Netherlands) (Eu-
roSys ’14). Association for Computing Machinery, New York, NY, USA, Article
11, 14 pages. https://doi.org/10.1145/2592798.2592800

[32] Stephen T. Heumann, Vikram S. Adve, and Shengjie Wang. 2013. The Tasks with
E�ects Model for Safe Concurrency. In Proceedings of the 18th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (Shenzhen, China)
(PPoPP ’13). Association for Computing Machinery, New York, NY, USA, 239–250.
https://doi.org/10.1145/2442516.2442540

[33] Nima Honarmand and Josep Torrellas. 2014. RelaxReplay: Record and Replay
for Relaxed-consistency Multiprocessors. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems (Salt Lake City, Utah, USA) (ASPLOS ’14). Association for Computing Ma-
chinery, New York, NY, USA, 223–238. https://doi.org/10.1145/2541940.2541979

[34] Derek R. Hower, Polina Dudnik, Mark D. Hill, and David A. Wood. 2011. Calvin:
Deterministic or Not? Free Will to Choose. In Proceedings of the 2011 IEEE 17th
International Symposium on High Performance Computer Architecture (HPCA ’11).
IEEE Computer Society, Washington, DC, USA, 333–334. http://dl.acm.org/
citation.cfm?id=2014698.2014870

[35] Je� Huang, Peng Liu, and Charles Zhang. 2010. LEAP: Lightweight Determinis-
tic Multi-processor Replay of Concurrent Java Programs. In Proceedings of the
Eighteenth ACM SIGSOFT International Symposium on Foundations of Software En-
gineering (Santa Fe, New Mexico, USA) (FSE ’10). Association for Computing Ma-
chinery, New York, NY, USA, 207–216. https://doi.org/10.1145/1882291.1882323

[36] Je� Huang, Charles Zhang, and Julian Dolby. 2013. CLAP: Recording Local
Executions to Reproduce Concurrency Failures. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and Implementation (Seat-
tle, Washington, USA) (PLDI ’13). Association for Computing Machinery, New
York, NY, USA, 141–152. https://doi.org/10.1145/2491956.2462167

[37] Shiyou Huang, Bowen Cai, and Je� Huang. 2017. Towards Production-run
Heisenbugs Reproduction on Commercial Hardware. In Proceedings of the 2017
USENIX Conference on Usenix Annual Technical Conference (Santa Clara, CA,
USA) (USENIX ATC ’17). USENIX Association, Berkeley, CA, USA, 403–415. http:
//dl.acm.org/citation.cfm?id=3154690.3154729

[38] Nicholas Hunt, Tom Bergan, Luis Ceze, and Steven D. Gribble. 2013. DDOS:
Taming Nondeterminism in Distributed Systems. In Proceedings of the Eighteenth
International Conference on Architectural Support for Programming Languages
and Operating Systems (Houston, Texas, USA) (ASPLOS ’13). Association for
Computing Machinery, New York, NY, USA, 499–508. https://doi.org/10.1145/
2451116.2451170

[39] Manos Kapritsos, Yang Wang, Vivien Quema, Allen Clement, Lorenzo Alvisi, and
Mike Dahlin. 2012. All about Eve: Execute-Verify Replication for Multi-Core
Servers. In Proceedings of the 10th USENIX Conference on Operating Systems Design
and Implementation (Hollywood, CA, USA) (OSDI’12). USENIX Association, USA,
237–250.

[40] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed
System. Commun. ACM 21, 7 (July 1978), 558–565. https://doi.org/10.1145/
359545.359563

[41] Dongyoon Lee, Benjamin Wester, Kaushik Veeraraghavan, Satish Narayanasamy,
Peter M. Chen, and Jason Flinn. 2010. Respec: E�cient Online Multiprocessor
Replayvia Speculation and External Determinism. In Proceedings of the Fifteenth
Edition of ASPLOS on Architectural Support for Programming Languages and
Operating Systems (Pittsburgh, Pennsylvania, USA) (ASPLOS XV). Association

235

http://www.enderunix.org/aget/
http://freshmeat.sourceforge.net/projects/pfscan
http://parsec.cs.princeton.edu/parsec3-doc.htm
http://parsec.cs.princeton.edu/
https://launchpad.net/pbzip2
http://www.mplayerhq.hu/design7/news.html
http://gcc.gnu.org/onlinedocs/libstdc++/manual/parallel_mode.html
http://gcc.gnu.org/onlinedocs/libstdc++/manual/parallel_mode.html
https://www.oracle.com/database/technologies/related/berkeleydb.html
https://www.oracle.com/database/technologies/related/berkeleydb.html
http://www.imagemagick.org/script/index.php
http://www.nas.nasa.gov/software/npb.html
http://www.openldap.org/
http://redis.io/
https://github.com/chyiz/minSMT/
https://doi.org/10.1145/1629575.1629594
https://doi.org/10.1145/1629575.1629594
http://dl.acm.org/citation.cfm?id=1924943.1924957
http://dl.acm.org/citation.cfm?id=1924943.1924957
https://doi.org/10.1145/1736020.1736029
http://dl.acm.org/citation.cfm?id=1924943.1924956
http://dl.acm.org/citation.cfm?id=1924943.1924956
https://doi.org/10.1145/1640089.1640096
https://doi.org/10.1007/978-3-642-22655-7_15
https://doi.org/10.1007/978-3-642-22655-7_15
http://dl.acm.org/citation.cfm?id=1855591.1855595
http://dl.acm.org/citation.cfm?id=1855591.1855595
https://doi.org/10.1145/1640089.1640097
https://doi.org/10.1145/1926385.1926447
https://doi.org/10.1145/2815400.2815427
https://doi.org/10.1145/2517349.2522735
https://doi.org/10.1145/2043556.2043588
http://dl.acm.org/citation.cfm?id=1924943.1924958
https://doi.org/10.1145/1508244.1508255
https://doi.org/10.1145/1950365.1950376
https://doi.org/10.1145/2592798.2592800
https://doi.org/10.1145/2442516.2442540
https://doi.org/10.1145/2541940.2541979
http://dl.acm.org/citation.cfm?id=2014698.2014870
http://dl.acm.org/citation.cfm?id=2014698.2014870
https://doi.org/10.1145/1882291.1882323
https://doi.org/10.1145/2491956.2462167
http://dl.acm.org/citation.cfm?id=3154690.3154729
http://dl.acm.org/citation.cfm?id=3154690.3154729
https://doi.org/10.1145/2451116.2451170
https://doi.org/10.1145/2451116.2451170
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563

PACT ’22, October 10–12, 2022, Chicago, IL, USA Qi Zhao, Zhengyi Qiu, Shudi Shao, Xinning Hui, Hassan Ali Khan, and Guoliang Jin

for Computing Machinery, New York, NY, USA, 77–90. https://doi.org/10.1145/
1736020.1736031

[42] N. G. Leveson and C. S. Turner. 1993. An Investigation of the Therac-25 Accidents.
Computer 26, 7 (July 1993), 18–41. https://doi.org/10.1109/MC.1993.274940

[43] Hongyu Liu, Sam Silvestro, Wei Wang, Chen Tian, and Tongping Liu. 2018.
IReplayer: In-Situ and Identical Record-and-Replay for Multithreaded Appli-
cations. In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Philadelphia, PA, USA) (PLDI 2018). As-
sociation for Computing Machinery, New York, NY, USA, 344–358. https:
//doi.org/10.1145/3192366.3192380

[44] Tongping Liu, Charlie Curtsinger, and Emery D. Berger. 2011. Dthreads: E�cient
Deterministic Multithreading. In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles (Cascais, Portugal) (SOSP ’11). Association for
Computing Machinery, New York, NY, USA, 327–336. https://doi.org/10.1145/
2043556.2043587

[45] Kai Lu, Xu Zhou, Tom Bergan, and Xiaoping Wang. 2014. E�cient Deterministic
Multithreading Without Global Barriers. In Proceedings of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (Orlando, Florida,
USA) (PPoPP ’14). Association for Computing Machinery, New York, NY, USA,
287–300. https://doi.org/10.1145/2555243.2555252

[46] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learning from
Mistakes: A Comprehensive Study on Real World Concurrency Bug Characteris-
tics. In Proceedings of the 13th International Conference on Architectural Support
for Programming Languages and Operating Systems (Seattle, WA, USA) (ASP-
LOS XIII). Association for Computing Machinery, New York, NY, USA, 329–339.
https://doi.org/10.1145/1346281.1346323

[47] Ali José Mashtizadeh, Tal Gar�nkel, David Terei, David Mazieres, and Mendel
Rosenblum. 2017. Towards Practical Default-On Multi-Core Record/Replay. In
Proceedings of the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems (Xi’an, China) (ASPLOS ’17).
Association for Computing Machinery, New York, NY, USA, 693–708. https:
//doi.org/10.1145/3037697.3037751

[48] TimothyMerri�eld, Joseph Devietti, and Jakob Eriksson. 2015. High-performance
Determinism with Total Store Order Consistency. In Proceedings of the Tenth
European Conference on Computer Systems (Bordeaux, France) (EuroSys ’15). As-
sociation for Computing Machinery, New York, NY, USA, Article 31, 13 pages.
https://doi.org/10.1145/2741948.2741960

[49] Timothy Merri�eld and Jakob Eriksson. 2013. Conversion: Multi-version Con-
currency Control for Main Memory Segments. In Proceedings of the 8th ACM
European Conference on Computer Systems (Prague, Czech Republic) (EuroSys
’13). Association for Computing Machinery, New York, NY, USA, 127–139.
https://doi.org/10.1145/2465351.2465365

[50] TimothyMerri�eld, Sepideh Roghanchi, JosephDevietti, and Jakob Eriksson. 2019.
Lazy Determinism for Faster Deterministic Multithreading. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems (Providence, RI, USA) (ASPLOS ’19). Association
for Computing Machinery, New York, NY, USA, 879–891. https://doi.org/10.
1145/3297858.3304047

[51] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2014. Deterministic
Galois: On-demand, Portable and Parameterless. In Proceedings of the 19th In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems (Salt Lake City, Utah, USA) (ASPLOS ’14). Association for
Computing Machinery, New York, NY, USA, 499–512. https://doi.org/10.1145/
2541940.2541964

[52] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. 2009. Kendo: E�cient
Deterministic Multithreading in Software. In Proceedings of the 14th International
Conference on Architectural Support for Programming Languages and Operating
Systems (Washington, DC, USA) (ASPLOS XIV). Association for Computing Ma-
chinery, New York, NY, USA, 97–108. https://doi.org/10.1145/1508244.1508256

[53] Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning Yin, Rini Kaushik, Kyu H.
Lee, and Shan Lu. 2009. PRES: Probabilistic Replay with Execution Sketching
on Multiprocessors. In Proceedings of the ACM SIGOPS 22nd Symposium on Op-
erating Systems Principles (Big Sky, Montana, USA) (SOSP ’09). Association for
Computing Machinery, New York, NY, USA, 177–192. https://doi.org/10.1145/
1629575.1629593

[54] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Chris-
tos Kozyrakis. 2007. Evaluating MapReduce for Multi-core and Multiprocessor
Systems. In Proceedings of the 2007 IEEE 13th International Symposium on High Per-
formance Computer Architecture (HPCA ’07). IEEE Computer Society, Washington,
DC, USA, 13–24. https://doi.org/10.1109/HPCA.2007.346181

[55] Martin C. Rinard and Monica S. Lam. 1998. The Design, Implementation, and
Evaluation of Jade. ACM Trans. Program. Lang. Syst. 20, 3 (May 1998), 483–545.
https://doi.org/10.1145/291889.291893

[56] Fred B. Schneider. 1990. Implementing Fault-Tolerant Services Using the State
Machine Approach: A Tutorial. ACM Comput. Surv. 22, 4 (Dec. 1990), 299–319.
https://doi.org/10.1145/98163.98167

[57] SecurityFocus. 2004. Software Bug Contributed to Blackout. http://www.
securityfocus.com/news/8016.

[58] Cedomir Segulja and Tarek S. Abdelrahman. 2012. Architectural Support for
Synchronization-Free Deterministic Parallel rogramming. In Proceedings of the
2012 IEEE 18th International Symposium on High Performance Computer Ar-
chitecture (HPCA ’12). IEEE Computer Society, Washington, DC, USA, 1–12.
https://doi.org/10.1109/HPCA.2012.6169038

[59] Cedomir Segulja and Tarek S. Abdelrahman. 2014. What is the Cost of Weak
Determinism?. In Proceedings of the 23rd International Conference on Parallel
Architectures and Compilation (Edmonton, AB, Canada) (PACT ’14). Association
for Computing Machinery, New York, NY, USA, 99–112. https://doi.org/10.1145/
2628071.2628099

[60] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica Ouyang, Pe-
ter M. Chen, Jason Flinn, and Satish Narayanasamy. 2011. DoublePlay: Paralleliz-
ing Sequential Logging and Replay. In Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems (Newport Beach, California, USA) (ASPLOS XVI). Association for Com-
puting Machinery, New York, NY, USA, 15–26. https://doi.org/10.1145/1950365.
1950370

[61] Jingyue Wu, Yang Tang, Gang Hu, Heming Cui, and Junfeng Yang. 2012. Sound
and Precise Analysis of Parallel Programs through Schedule Specialization. In Pro-
ceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design
and Implementation (Beijing, China) (PLDI ’12). Association for Computing Ma-
chinery, New York, NY, USA, 205–216. https://doi.org/10.1145/2254064.2254090

[62] Junfeng Yang, Heming Cui, Jingyue Wu, Yang Tang, and Gang Hu. 2014. Making
Parallel Programs Reliable with Stable Multithreading. Commun. ACM 57, 3
(March 2014), 58–69. https://doi.org/10.1145/2500875

[63] Qi Zhao, Zhengyi Qiu, and Guoliang Jin. 2019. Semantics-aware Scheduling
Policies for Synchronization Determinism. In Proceedings of the 24th Sympo-
sium on Principles and Practice of Parallel Programming (Washington, District of
Columbia) (PPoPP ’19). Association for Computing Machinery, New York, NY,
USA, 242–256. https://doi.org/10.1145/3293883.3295731

236

https://doi.org/10.1145/1736020.1736031
https://doi.org/10.1145/1736020.1736031
https://doi.org/10.1109/MC.1993.274940
https://doi.org/10.1145/3192366.3192380
https://doi.org/10.1145/3192366.3192380
https://doi.org/10.1145/2043556.2043587
https://doi.org/10.1145/2043556.2043587
https://doi.org/10.1145/2555243.2555252
https://doi.org/10.1145/1346281.1346323
https://doi.org/10.1145/3037697.3037751
https://doi.org/10.1145/3037697.3037751
https://doi.org/10.1145/2741948.2741960
https://doi.org/10.1145/2465351.2465365
https://doi.org/10.1145/3297858.3304047
https://doi.org/10.1145/3297858.3304047
https://doi.org/10.1145/2541940.2541964
https://doi.org/10.1145/2541940.2541964
https://doi.org/10.1145/1508244.1508256
https://doi.org/10.1145/1629575.1629593
https://doi.org/10.1145/1629575.1629593
https://doi.org/10.1109/HPCA.2007.346181
https://doi.org/10.1145/291889.291893
https://doi.org/10.1145/98163.98167
http://www.securityfocus.com/news/8016
http://www.securityfocus.com/news/8016
https://doi.org/10.1109/HPCA.2012.6169038
https://doi.org/10.1145/2628071.2628099
https://doi.org/10.1145/2628071.2628099
https://doi.org/10.1145/1950365.1950370
https://doi.org/10.1145/1950365.1950370
https://doi.org/10.1145/2254064.2254090
https://doi.org/10.1145/2500875
https://doi.org/10.1145/3293883.3295731

Understanding and Reaching the Performance Limit of Schedule Tuning on Stable Synchronization Determinism PACT ’22, October 10–12, 2022, Chicago, IL, USA

A ARTIFACT APPENDIX

A.1 Abstract

Our artifact can be downloaded through Github. It provides the

source code of our minSMT library and other libraries used for com-

parison. It also provides scripts to download all the benchmarks

used in our paper, automatically build them, and conduct experi-

ments. All libraries, benchmarks, and datasets needed for evaluation

are either already included in our artifact or can be downloaded

using our scripts.

A.2 Artifact Check-List (Meta-Information)

• Program: DMT runtime libraries, including minSMT and

others for comparison, and benchmark suites and real-world

programs used for evaluation.

• Compilation: Compilation scripts are provided, and they

use GCC 9 from Ubuntu 20.04.

• Run-time environment: Ubuntu 20.04 and GCC 9 with

OpenMP support. Alternatively, the Docker environment

provided in this artifact, which can run on any Linux distri-

bution with a kernel version 5.4.

• Hardware: x86_64 CPU with at least 16 logical cores, at

least 16GB of memory, and 70GB of disk space.

• Execution: Evaluation scripts are provided, and they can

be customized if necessary.

• Metrics: Execution time of programs under non-deterministic,

TONDSync, QiThread, and minSMT will be reported, as

well as selected programs with added CSFine annotations,

and the calculated overhead of each con�guration.

• Output: Results are saved as a .csv �le, and scripts are

provided to turn it into �gures.

• Experiments: We provide evaluation scripts and con�g-

urations to run experiments, collect results, and generate

�gures. Due to hardware di�erences, the actual results may

vary. However, the general trend comparing di�erent DMT

systems should be similar.

• How much disk space is required (approximately)?:

Around 70GB.

• How much time is needed to prepare work�ow (ap-

proximately)?: It takes about two hours to download and

compile all libraries and programs.

• Howmuch time is needed to complete experiments (ap-

proximately)?: It will take several days to produce all data

with the default con�guration of taking the average from

50 repeated runs. We also provide evaluation con�gurations

with fewer runs or on a curated set of programs.

• Publicly available?: Yes. https://github.com/chyiz/minSMT.

• Code licenses: Custom copyright license. Please refer to

the LICENSE �le in the repository.

A.3 Description

A.3.1 How to Access. Our artifact is publicly accessible on Github

at https://github.com/chyiz/minSMT. You may clone it using git:

git clone https://github.com/chyiz/minSMT.git

A.3.2 Hardware Dependencies. We conducted our experiments on

a machine with a Xeon E5-2695 V4 processor and 64GB memory.

While our code should be runnable on any multi-core machines,

we recommend a CPU with at least 16 logical cores and a similar

memory con�guration.

Building all benchmarks takes about 70GB of disk space, so make

sure you have enough free disk space on the volume you use.

A.3.3 So�ware Dependencies. We used Ubuntu 20.04 64-bit to com-

pile minSMT and all our benchmarks, and the scripts provided in

this repository have been tested on this OS version. We also pro-

vide a Docker environment to help you use our artifact under other

Linux distributions.

A.4 Installation

There are two ways of building and running our artifact: natively or

using Docker. We recommend using Docker for easier deployment.

A.4.1 Docker Installation. We prepared a Ubuntu 20.04 Docker

environment to help you compile and run our experiments. After

cloning this repository onto your local system, and while in the

repository root directory, run the following command:

sudo DOCKER_BUILDKIT=1 docker build \

--build-arg UID=$(id -u) \

--build-arg GID=$(id -g) \

-t minsmt-ae .

to build a docker image with all necessary packages to compile

minSMT and all benchmarks. This step should take about �ve min-

utes with good internet speed.

After that, a docker image will be available with tag minsmt-ae.

While still in the project root directory, run the following command:

sudo docker run -it \

-v `pwd`:/home/minsmt/minsmt-ae minsmt-ae:latest

You will enter a BASH shell at /home/minsmt/minsmt-ae, and the

repository on your host machine is mounted on that path in the

container. If you ever exit the docker environment, simply go back

to the repository root directory and run the above command again.

Now, run ./buildall-docker.sh to compile libraries and bench-

marks. This step will take about two hours. During this process,

make sure you have a stable internet connection, since the build

script will also download benchmarks and input �les from their

o�cial websites.

A.4.2 Native Installation. Alternatively, you may build the project

directly. The build script is tested under Ubuntu 20.04 and may not

work on other Linux distributions.

First, run source env.sh in the repository root directory to set

the environment variables.

Then, simply run ./buildall.sh, which will build all libraries

and download and build all programs used for evaluation.

A.5 Experiment Work�ow

To run the experiments, �rst switch to the evaluation directory

while you are in the repository root directory with cd eval. In the

evaluation directory, run:

./eval_policy.py all-compare-with-qithread.cfg

to test all benchmarks. This will run all benchmarks 50 times with

QiThread, TONDSync, and minSMT con�gurations, and take the

237

https://github.com/chyiz/minSMT
https://github.com/chyiz/minSMT

PACT ’22, October 10–12, 2022, Chicago, IL, USA Qi Zhao, Zhengyi Qiu, Shudi Shao, Xinning Hui, Hassan Ali Khan, and Guoliang Jin

average of each con�guration. Evaluating all benchmarks will take

a couple of days (around �ve on our platform) to �nish.

Alternatively, you may replace the full-scale con�guration �le

all-compare-with-qithread.cfg in the above command with

all-compare-with-qithread-small.cfg to run each benchmark

for 10 times, and the script should �nish in a day or two. You may

also use minSMT-subset-compare-with-qithread.cfg to run a

curated set of benchmarks that we have discussed in the paper.

The evaluation results will be saved to a directory named

<config_file_name><date_and_time>_<git_commit>

A symbolic link current is also modi�ed to always point to the

latest evaluation results.

Then, to extract all results into a comma separated values (.csv)

�le, run:

./get_all_results.sh current/ > results.csv

Replace current with the directory name that contains evaluation

results if you are exporting old evaluations. The results will be in a

.csv �le that can then be imported to a spreadsheet.

At last, to generate the graphs presented in our paper, use Jupyter

Notebook to open generate-figure.ipynb in the eval directory

and run all cells. It will read the results.csv �le in the same

directory by default.

A.6 Evaluation and Expected Results

After �nishing experiments with the full-scale con�guration �le

all-compare-with-qithread.cfg and extracting results, your

.csv �le should contain all the data needed to recreate Figure 5 or

the �rst seven columns of Table 2.

Due to hardware di�erences, you will not get exactly the same re-

sults. However, you should observe a similar trend when comparing

di�erent libraries and con�gurations.

A.7 Experiment Customization

A.7.1 Running an Individual Benchmark. A con�guration (.cfg)

�le consists of one or more sections, and each section represents

a benchmark program to be evaluated. You may extract a single

section and save it to an individual con�guration �le to test one

benchmark. Then, you can supply the con�guration �le to the same

evaluation script eval_policy.py.

A.7.2 Selecting Policies. Each benchmark section in a con�gura-

tion �le has a RUN_CONFIGS parameter. It is used to select a set of

policies to run. In all-compare-with-qithread.cfg, three con�g-

urations are used: qithreadmeans all the policies introduced in the

QiThread paper but nothing else, null-policy is the TONDSync

mode introduced in this paper, and all-policies are all policies

available in minSMT, including the ones from QiThread. Pre�x

pcs- can be added before null-policy and all-policies to en-

able CSFine annotations.

Other available options are: no-hint for pure round-robin sched-

uling, hinted for Parrot paper con�gurations, and no-pcs-hint

for Parrot paper con�gurations without the PCS hint.

A.7.3 Tuning Parameters. You may �ne tune minSMT parameters

like disabling individual features using the local.options �le,

which will be read by the evaluation script from the same directory

as the benchmark binary.
To start, you run a single benchmark to get the results directory.

Inside the results directory, you will see a subdirectory named

after the benchmark, and the subdirectory contains the benchmark

binary, inputs it used, outputs it generated during evaluation, one or

more .options �les the evaluation script generated corresponding

to the RUN_CONFIGS designated in the con�guration �le, and a

local.options �le, i.e., the last options �le used.

You can rename an existing options �le to local.options so

that it can be picked up by the next execution. For the meaning of

parameters, please refer to the comments in the default.options

�le under the repository root folder.

After adjusting the local.options �le, you may run the bench-

mark using the following command:

LD_PRELOAD=$minSMT_ROOT/dync_hook/interpose.so \

./<benchmark_binary> <benchmark_parameters>

A.7.4 Applying Delays. To apply delays to benchmarks, �rst follow

the above instructions to run a benchmark once, and get the results

directory. Then, change directory into the benchmark sub-directory

inside the generated results directory, create a �le named app.time,

and edit local.options to set enforce_delays = 1. Now, run

the benchmark like below:

LD_PRELOAD=$minSMT_ROOT/dync_hook/interpose.so \

./<benchmark_binary> <benchmark_parameters>

238

	Abstract
	1 Introduction
	2 Related Work
	3 Categorization and Comparison of Existing DMT Systems
	3.1 Three Axes for Categorization
	3.2 Categorization and Comparison

	4 Benchmarks, Platform, and Methodology
	4.1 Background on Parrot and QiThread
	4.2 Benchmarks and Platform
	4.3 Methodology

	5 Scheduling-Oblivious Overheads
	5.1 Totally-Ordered Synchronization
	5.2 Workload-Length Imbalance

	6 minSMT Design and Implementation
	6.1 New Policies and Annotation
	6.2 Implementation

	7 Evaluation
	7.1 Evaluation of Performance Limit
	7.2 Performance Comparison
	7.3 Discussion

	8 Conclusion
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List (Meta-Information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Results
	A.7 Experiment Customization

