
A Deep Study of the Effects and Fixes
of Server-Side Request Races in Web Applications

Zhengyi Qiu
North Carolina State University

Raleigh, North Carolina, USA

zqiu2@ncsu.edu

Shudi Shao
North Carolina State University

Raleigh, North Carolina, USA

sshao@ncsu.edu

Qi Zhao
North Carolina State University

Raleigh, North Carolina, USA

qzhao6@ncsu.edu

Hassan Ali Khan
North Carolina State University

Raleigh, North Carolina, USA

hakhan@ncsu.edu

Xinning Hui
North Carolina State University

Raleigh, North Carolina, USA

xhui@ncsu.edu

Guoliang Jin
North Carolina State University

Raleigh, North Carolina, USA

guoliang_jin@ncsu.edu

ABSTRACT

Server-side web applications are vulnerable to request races. While

some previous studies of real-world request races exist, they primar-

ily focus on the root cause of these bugs. To better combat request

races in server-side web applications, we need a deep understanding

of their characteristics. In this paper, we provide a complementary

focus on race effects and fixes with an enlarged set of request races

from web applications developed with Object-Relational Mapping

(ORM) frameworks. We revisit characterization questions used in

previous studies on newly included request races, distinguish the

external and internal effects of request races, and relate request-

race fixes with concurrency control mechanisms in languages and

frameworks for developing server-side web applications.

Our study reveals that: (1) request races from ORM-based web

applications share the same characteristics as those from raw-SQL

web applications; (2) request races violating application semantics

without explicit crashes and error messages externally are common,

and latent request races, which only corrupt some shared resource

internally but require extra requests to expose the misbehavior,

are also common; and (3) various fix strategies other than using

synchronization mechanisms are used to fix request races. We ex-

pect that our results can help developers better understand request

races and guide the design and development of tools for combating

request races.

CCS CONCEPTS

• Software and its engineering → Software defect analysis;

Software reliability; Concurrency control; Organizing principles

for web applications; Consistency.

KEYWORDS

web-application request races, characteristic study, Object-Relational

Mapping, external and internal effects, fix strategies

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9303-4/22/05. . . $15.00
https://doi.org/10.1145/3524842.3528463

ACM Reference Format:

Zhengyi Qiu, Shudi Shao, Qi Zhao, Hassan Ali Khan, Xinning Hui, and Guo-

liang Jin. 2022. A Deep Study of the Effects and Fixes of Server-Side Request

Races in Web Applications. In 19th International Conference on Mining Soft-

ware Repositories (MSR ’22), May 23–24, 2022, Pittsburgh, PA, USA. ACM,

New York, NY, USA, 13 pages. https://doi.org/10.1145/3524842.3528463

1 INTRODUCTION

Modern web applications, ranging from e-commerce websites to

social media platforms, regularly handle a large volume of incoming

requests and generate their corresponding responses. The most

common architecture used in modern web applications is the 3-

tier architecture: i) the presentation tier contains user interface

scripts of web applications, ii) the application tier hosts back-end

scripts developed using different languages, e.g., Python, Java, Perl,

PHP, or Ruby, and these scripts contain request handlers to handle

HTTP requests from users, and iii) the data tier hosts a database

management system for storing and retrieving persistent data.

The presentation tier communicates with the application tier us-

ingHTTP requests, which are handled by request-handler scripts on

the application layer. The application layer interacts with the data

tier either using raw SQL queries, e.g., in the LAMP (Linux, Apache,

MySQL, and PHP) stack, or using Object-Relational Mapping (ORM)

support from programming frameworks, e.g., Ruby-on-Rails.

Upon receiving HTTP requests, the servers hosting web appli-

cations initiate respective request-handler scripts to process the

user requests. The initiated request handlers could access shared

resources. While handling concurrent requests, request handlers

running concurrently could access shared resources in different

orders, and request races occur when the execution of these con-

current request handlers on the server-side can lead to erroneous

behaviors depending on the order of shared-resource accesses [72].

Request races pose threats to the reliability and security [31] of

web applications. Some recent web applications failures due to re-

quest races have damaged the reputation of famous companies and

incurred financial losses, e.g., Starbucks gift-card duplicate balance

transfer [46], Flexcoin bankruptcy caused by wallet overdraw [42],

and Instacart coupon double redemption [41].

To help the understanding of request races and guide the design

of tools for combating request races, we recently studied 157 server-

side request races collected from popular open-source web applica-

tions that are developed with different languages and frameworks,

744

The 2022 Mining Software Repositories Conference

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3524842.3528463&domain=pdf&date_stamp=2022-10-17

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Zhengyi Qiu, Shudi Shao, Qi Zhao, Hassan Ali Khan, Xinning Hui, and Guoliang Jin

i.e., PHP, Perl, Python, C#, Java, Ruby-on-Rails, and Node.js [72].

The results of this study guided the design of a dynamic race de-

tection and inference tool employing novel techniques to model

happens-before relationships between HTTP requests handled by

web applications. We also pointed out that request races between re-

quest handlers are different from races in multi-threaded programs

that are used in the 3-tier architecture, e.g., Apache and MySQL,

and thus they cannot benefit from the significant research progress

on races in multi-threaded programs during the last decade.

Although our previous study [72] is the first to comprehensively

explore request races to date in open-source web applications, it

still has significant limitations.

First, its coverage of request races in ORM-based web applica-

tions is limited, i.e., it only includes 35 request races from one web

application developed with Hibernate and three developed with

Ruby-on-Rails. It is not clear if request races from a more diverse

set of ORM-based web applications share the same characteristics

as in raw-SQL web applications.

Secondly, its characterization on the effects of request races does

not differentiate external effects, i.e., how errors impact users as

failures, and internal effects, i.e., how errors may corrupt inter-

nal data and propagate in different layers of the application. In a

previous study of concurrency bugs in the multi-threaded MySQL,

Fonseca et al. differentiated the external effects and internal effects

of the concurrency bugs being studied, the distinction of which led

to new findings and insights [45]. However, such a distinction was

not made in our previous study of request races [72].

Lastly, its characterization on the fix strategies did not relate to

the commonly used concurrency control primitives provided by

ORM frameworks. Particularly, Bailis et al. summarized and studied

the usage of feral concurrency control primitives of Ruby-on-Rails

in web applications [37]. However, it is not clear how common these

primitives are used by programmers to fix request races in ORM-

based web applications, and it is also not clear whether some fixes

in raw-SQL web applications can also be viewed as equivalent to

some feral concurrency control primitives from ORM frameworks.

To address the limitations mentioned above, we conduct a study

with analyses focusing on the effects and fix strategies of real-world

request races on 157 request races that have already been studied

by us [72] and 92 request races from ORM-based applications that

have not been studied before. Our study primarily focuses on the

following three research questions:

• RQ1:What are the characteristics of request races in ORM-

based web applications? Do they share the same character-

istics with raw-SQL web applications on racing-resource

types, root-cause patterns, and manifestation conditions?

• RQ2: What are the external effects of requests races that

affect users using theweb applications?What are the internal

effects of request races that cause errors in internal data?

• RQ3: How often do developers use the feral concurrency

control mechanisms provided by ORM frameworks to fix

request races? Do developers take similar strategies when

fixing request races in raw-SQL web applications?

To answer these research questions, we first pick four popular

ORM frameworks in different programming languages, which are

Django in Python, Hibernate in Java, Laravel in PHP, and Ruby-

on-Rails in Ruby. We then search for open-source real-world web

applications on GitHub developed with these ORM frameworks,

and we keep those active projects with more than 2K stars. We also

include applications from the previous work. To this end, we include

7 web applications using raw-SQL, 7 in Django, 2 in Hibernate, 2

in Laravel, 12 in Ruby-on-Rails, and 11 in Node.js, and we study a

total of 249 request races from these applications.

We study this set of request races to answer the three research

questions. OnRQ1, we find that request races fromORM-basedweb

applications share the same characteristics as those from raw-SQL

web applications. On RQ2, we characterize the external effects of

request races into five types, i.e., crash, errors, performance, hang,

and semantics. Our results suggest that semantics is the most dom-

inant external effect to users, where the effects are not as easy to

notice as crashes or errors. We further categorize request races as la-

tent and non-latent, indicating whether extra requests are needed to

make the errors externally visible as failures. We find that 93 of our

studied request races are latent, and we further study the internal

effects of these latent request races to understand why the semantic

assumption is violated. On RQ3, we find that only a very small

number of studied request races are fixed using feral concurrency

control primitives, even in ORM-based web applications.

We expect our results to provide a deep understanding of the

characteristics of real-world request races from a diverse set of web

applications, which can benefit both application developers and tool

developers. For tool developers, our results can guide the design of

tools for different purposes, e.g., race detection for ORM-based web

applications with our results on RQ1, applying the effect-oriented

approach to detect a diverse set of request races with our results

on RQ2, and designing automated request-race fixing tools with

our results on RQ3.

The remainder of this paper is structured as follows. We first

present some background related to our research questions and

define some essential terms in Section 2. Then, we introduce the

methodology of our study in Section 3. We present our results on

the three research questions in Sections 4, 5, and 6, respectively,

and we discuss future research opportunities in Section 7. After

that, we present related work in Section 8 and discuss threats to

validity in Section 9. Finally, we conclude in Section 10. Our dataset

can be found at https://github.com/caseqiu213/MSR2022_dataset.

2 BACKGROUND

In this section, we present some background related to each of our

research questions and define some necessary terms.

Unserializable interleaving patterns. In our previous study,

request races were categorized as either atomicity violations or

order violations, and unserializable interleaving patterns in atomic-

ity violations were summarized [72]. In RQ1, we follow the same

methodology and label each new bug we study.

Each unserializable pattern consists of three or four operations.

Each operation is represented with a single letter, or a group of

letters enclosed in a pair of parentheses “()” and separated by

‘|’, indicating multiple possibilities. The first and third operations

are from one request. The second and fourth are from the second

request and marked with ‘′’.

The pattern of (𝜖 |𝑅)𝑅′(𝐴|𝑊 |𝐷) (𝐴′|𝑊 ′|𝐷 ′|𝑅′)was themost com-

mon one from our previous study [72], where 𝜖 stands for NULL

745

A Deep Study of the Effects and Fixes of Server-Side Request Races in Web Applications MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

operations, 𝑅 stands for read operations including database select,

file/dir read, and cache read, 𝐴 stands for append operations in-

cluding database insert, file append, file/dir create, and cache add,

𝑊 stands for write operations including database update, file over-

write, and cache set or replace, and 𝐷 stands for delete operations

including database delete, file/dir delete, and cache delete.

Note that unlike unserializable interleaving patterns in multi-

threaded programs, where memory operations are usually modeled

as read operations or write operations only, it is necessary to sepa-

rately model append operations and delete operations for shared-

resource accesses in request races of web applications [72, 85].

External effects and internal effects. In RQ2, we distinguish

the external effects of request races, which are exposed to users,

from the internal effects, which impact the internal storage and

further propagate across the application code. As the study by

Fonseca et al. studied concurrency bugs in MySQL [45], but we will

study request races in web applications, our results are different

due to the difference of study subjects.

In our previous work [72], database races were categorized as

having effects of database error on duplicate data insertion, appli-

cation error caused by duplicate data, inconsistent or stale view,

misleading error message, and program crash or failure; file races

have the effects of duplicate file or directory creation, file data cor-

ruption, non-existing file or directory error, and misleading error

message; cache races have inconsistent or stale view.

However, the effect categorization mixes external effects and

internal effects. For example, Moodle 40891 was previously labeled

as duplicate directory creation. This is the internal effect happening

in the file system, and on the user-side, users are exposed to an

error of invalid permission.

ORM feral concurrency control. Modern ORM frameworks

provide two types of feral concurrency control primitives on top of

transaction and locking [37], and they are:

(1) Application-level validation. Before saving a record to data-

base, the ORM framework runs a set of validations and only saves

the record after all validations pass. The validations ensure, for

example, the record does not contain a null value for a specific field

or the record does not exist and therefore is unique in the database.

(2) Application-level association. The association is a connection

between two records, which acts like a foreign key in the database.

By checking if a field is present in the database, it is ensured that

the association is indeed valid.

Because these concurrency control strategies are in the appli-

cation level and operate external to the database, they are termed

as feral concurrency control mechanisms. In RQ3, we explore the

relationships between fixes and the feral concurrency control prim-

itives provided by ORM frameworks.

In addition, the previous work [37] also applied the theory of

invariant confluence [36] to feral concurrency control mechanisms,

where invariant confluence (I-confluence) is a condition that if

transactions maintain correct database states regarding an invari-

ant when they execute in isolation, concurrent execution of these

transactions can yield another correct state. The authors showed

that some feral concurrency control mechanisms, e.g., uniqueness

validation, are not I-confluent, which indicates concurrent transac-

tion execution could violate the validation and are still vulnerable

to request races.

Table 1:Web applications andnumbers of bugs being studied

Application Type Application
Framework /
Language

Number on
Server Side

Raw-SQL

DNN [8] -/C# 4
Bugzilla [3] -/Perl 11
Drupal [9] -/PHP 31
MediaWiki [12] -/PHP 28
Moodle [13] -/PHP 15
WordPress [29] -/PHP 18
Odoo [15] -/Python 2

ORM-based

Oscar [18] Django/Python 2
PostHog [20] Django/Python 3
Redash [21] Django/Python 4
Saleor [24] Django/Python 4
Sentry [25] Django/Python 8
Weblate [28] Django/Python 6
Zulip [30] Django/Python 8
BroadLeaf [2] Hibernate/Java 2
OpenMRS [16] Hibernate/Java 3
October [14] Laravel/PHP 1
Pixelfed [19] Laravel/PHP 2
AlchemyCMS [1] Ruby-on-Rails/Ruby 1
Canvas LMS [4] Ruby-on-Rails/Ruby 29
Danbooru [5] Ruby-on-Rails/Ruby 3
diaspora* [6] Ruby-on-Rails/Ruby 2
Discourse [7] Ruby-on-Rails/Ruby 9
Gitlab [10] Ruby-on-Rails/Ruby 30
LinuxFr.org [11] Ruby-on-Rails/Ruby 1
OpenProject [17] Ruby-on-Rails/Ruby 2
Redmine [22] Ruby-on-Rails/Ruby 2
ROR [23] Ruby-on-Rails/Ruby 1
Sharetribe [26] Ruby-on-Rails/Ruby 2
Spree [27] Ruby-on-Rails/Ruby 4

Node.js-based [11 applications]a Node.js/Javascript 11

Total 249
a We omit the names of the 11 Node.js-based applications each with one bug, and they
can be found in our dataset.

3 METHODOLOGY

In this section, we describe our methodology on how we collect

and study request races.

Application and Bug Selection.We start from the bugs in our

previous study [72] collected from the bug tracking systems of real-

world open-source web applications. Although this bug set covers

three different types of paradigms and languages, i.e., (1) classical

ones that access databases by constructing raw SQL queries di-

rectly, (2) those implemented on top of Object-Relational-Mapping

(ORM) frameworks, and (3) those implemented on top of the Node.js

framework, the coverage on ORM-based web applications is not

extensive. Specifically, only 35 request races from three web ap-

plications developed with Ruby-on-Rails and two request races

from OpenMRS developed with Hibernate for Java are included.

We extend the selection of ORM frameworks to include Laravel for

PHP and Django for Python. Note that the previous study miscate-

gorized OpenMRS as an application that directly constructs SQL

queries access database.

To find more ORM-based web applications, we search for open-

source projects on GitHub that are labeled with the four ORM

framework names, and we choose web applications with more than

2K stars. We also exclude applications that have been archived

or inactive since 2017. After getting the set of applications, we

follow a similar methodology as used by previous studies of con-

currency bugs in multi-threaded applications [45, 64], performance

746

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Zhengyi Qiu, Shudi Shao, Qi Zhao, Hassan Ali Khan, Xinning Hui, and Guoliang Jin

Table 2: Overall results on racing resource types, root cause patterns, manifestation conditions, and unserializable patterns

for atomicity violations

raw-SQL Django Hibernate Laravel Ruby on Rails Node.js Total

Number of bugs studied 109 35 5 3 86 11 249

Racing-Resource Types

Database 69 31 1 2 71 4 178

File 24 2 2 1 6 0 35

Cache only 10 0 0 0 2 0 12

Cache with database 5 1 0 0 0 0 6

Shared-memory data structure 1 1 2 0 7 7 18

Root Cause Patterns and Manifestation Conditions

Atomicity violation with two instances of the same request handler 73 19 4 3 53 6 158

Atomicity violation with two different request handlers 35 12 1 0 10 2 60

Order violation within one request handler 1 4 0 0 23 3 31

Unserializable Patterns for Atomicity Violation

(𝜖 |𝑅)𝑅′ (𝐴 |𝑊 |𝐷) (𝐴′ |𝑊 ′ |𝐷′ |𝑅′) 91 28 5 3 60 4 191

𝐴(𝐴′ |𝑅′ |𝑊 ′)𝐴 2 0 0 0 0 0 2

𝑊 (𝐴′ |𝑅′) (𝑊 |𝐴) 2 1 0 0 1 0 4

𝐷𝐷′𝐴𝐴′ 4 0 0 0 0 0 4

(𝐴 |𝑊) (𝐴′ |𝐷′ |𝑊 ′)𝑅 9 2 0 0 2 4 17

bugs in web applications [76, 79, 80], and non-deadlock concur-

rency bugs [43, 72, 78] and deadlock bugs in web applications [71]

to collect more request races. Specifically, we first search several

keywords that are related to races in the bug tracking system and

commit history, e.g., “race(s),” “concurrent/concurrency,” and “syn-

chronize.” After the keyword search, we get 123, 20, 16, and 101

results from web applications developed using Django, Hibernate,

Laravel, and Ruby-on-Rails, respectively. We then manually filter

out bugs that are obviously not a race, e.g., results with keywords

appearing as substrings or used in a different context. We also

exclude bugs that are closed without fixes.

To this end, we find 92 new server-side request races from appli-

cations based on these four ORM frameworks, and all these bugs

have sufficient information for us to understand and are in closed

status with committed fixes. Note that we also find 37 new client-

side races, which we do not investigate further given our focus on

server-side request races. Combining with the 157 server-side re-

quest races from the previous study, we study a total of 249 request

races, where 109 are in classical web applications, 129 in ORM-

based web applications, and 11 in Node.js-based web applications.

Table 1 lists the names of the applications and the number of bugs

being studied.

Report-Study Methodology. In our study, the analysis focuses

on formulating characterization questions and characterizing our

collected bugs along with these questions. We start with character-

ization questions used in our previous study [72]. To come up with

new characterization questions, we also leverage the existing stud-

ies, i.e., one on the external and internal effects in multi-threaded

programs [45] and the other on feral concurrency control [37].

To answer RQ1, we first double-check the characterization re-

sults of the 157 bugs in our previous study, and we then follow the

same methodology to characterize the 92 newly collected bugs. To

answer RQ2, we get inspiration from the previous study on the

internal and external effects of concurrency bugs in MySQL [45].

We study the external effects of request races. Then, we categorize

request races as latent and non-latent. For latent request races, we

further study their internal effects. To answer RQ3, we match fix

strategies against the types of concurrency control primitives in

programming languages and frameworks for web applications, and

we further categorize fix strategies that are not just using existing

concurrency control primitives. On RQ2 and RQ3, we study both

the 92 newly collected bugs and the 157 previously studied bugs.

With the characterization questions, two authors first individu-

ally examine available resources for each bug, including the bug

report description, reproducing steps if available, developers’ dis-

cussion, source code, and intermediate and final patches, to charac-

terize each bug. Then, the two authors cross-check their results to

reach an agreement on the characterization results. This process

helps to further reduce threats to credibility and validity.

4 RQ1: ROOT CAUSE PATTERNS

Following the same characterization methodology in our previous

study [72], we characterize request races newly collected from

ORM-based web applications along with three aspects, i.e., racing

resource types, root cause patterns, and manifestation conditions.

Overall, we find that request races from ORM-based web applica-

tions share similar characteristics as those studied in the previous

study on these aspects. Table 2 summarizes our findings among

applications using four popular ORM frameworks in different pro-

gramming languages, together with our previous results of raw-SQL

and Node.js applications. Note that our previous study [72] included

few request races in ORM-based web applications.

Racing resource types. Databases, files, cache using modules

like Redis or Memcached, and shared-memory data structures are

still the racing resources we find in applications using ORM frame-

works as in our previous study [72]. We note that most bugs racing

on cache are found in raw-SQL applications. We also note that most

bugs racing on shared-memory data structure are found in applica-

tions using Node.js or ORM frameworks, while only one such bug

is found in raw-SQL applications. The one shared-memory data

structure race in raw-SQL is MediaWiki 28179. MediaWiki uses

$_SESSION to store records of uploaded files, and when concurrent

file uploading happens, users notice that $_SESSIONmisses records.

This problem happens because the application checks if an entry

associated with the file name is null and creates an empty array if

it is. Concurrent uploading of the same file will be written to the

same entry, and one record is overwritten by the other.

747

A Deep Study of the Effects and Fixes of Server-Side Request Races in Web Applications MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

Table 3: Overall results on external effects. Numbers in parentheses indicate the number of latent request races.

raw-SQL Django Hibernate Laravel Ruby on Rails Node.js Total

Number of bugs studied 109 (43) 35 (15) 5 (1) 3 (2) 86 (27) 11 (5) 249 (93)

Database

Crash due to unhandled errors 0 13 (0) 1 (0) 0 18 (0) 0 32 (0)

Error from DB 25 (0) 0 0 0 8 (0) 0 33 (0)

Error from application 7 (1) 1 (0) 0 0 5 (0) 0 13 (1)

Performance 1 (0) 0 0 0 0 0 1 (0)

Semantics-Read partially-updated, corrupted data 3(0) 0 0 0 3 (0) 0 6 (0)

Semantics-Return data not matching the current page 0 1 (0) 0 0 3 (0) 0 4 (0)

Semantics-Read after write not returning the just written data 1 (0) 2 (0) 0 0 10 (0) 1 (0) 14 (0)

Semantics-Data being silently overwritten 16 (16) 11 (11) 0 1 (1) 14 (14) 2 (2) 44 (44)

Semantics-Duplicate entries 16 (16) 3 (3) 0 1 (1) 10 (10) 1 (1) 31 (31)

File

Crash due to unhandled errors 2 (0) 0 0 1 (0) 1 (0) 0 4 (0)

Error from file call 13 (0) 0 0 0 2 (0) 0 15 (0)

Error from application 2 (0) 1 (0) 0 0 0 0 3 (0)

Semantics-Read corrupted file content 6 (4) 1 (1) 2 (1) 0 3 (1) 0 12 (7)

Semantics-Read corrupted directory structure 1 (1) 0 0 0 0 0 1 (1)

Cache only

Semantics-Page component having wrong data 6 (4) 0 0 0 1 (1) 0 7 (5)

Semantics-Page component having empty data 4 (0) 0 0 0 1 (1) 0 5 (1)

Cache with database

Semantics-Cache does not load updated DB data 5 (0) 1 (0) 0 0 0 0 6 (0)

Shared-memory data structure

Crash due to unhandled errors 0 1 (0) 1 (0) 0 1 (0) 2 (0) 5 (0)

Error from application 0 0 1 (0) 0 4 (0) 1 (0) 6 (0)

Hang 0 0 0 0 0 2 (0) 2 (0)

Semantics-Partial or wrong data stored 0 0 0 0 2 (0) 2 (2) 4 (2)

Semantics-Miss records 1 (1) 0 0 0 0 0 1 (1)

Root-cause patterns and manifestation conditions. Similar

to our previous study [72], atomicity violation and order violation

are still the two root-cause patterns of race bugs in applications

using ORM frameworks. For all bugs that manifest as atomicity

violations, they involve two request handlers, and they are inter-

request races. For all bugs that manifest as order violations, they

only require one request handler, and they are intra-request races.

Atomicity violations could either involve two instances of the

same request handler or two different request handlers. Some early

dynamic request detection techniques [54, 68] can only detect the

former case, and more advanced techniques that model happens-

before relationships between different request handlers are essen-

tial for handling the latter case [72]. In raw-SQL web applications,

around one-third of the studied atomicity violations are between

two different request handlers, while the ratio is around one-fourth

in ORM-based web applications. This shows that it is still impor-

tant to detect request races between different request handlers in

ORM-based web applications, and the happens-before relationship

modeling techniques in ReqRacer [72] could be leveraged.

Following the previous study, we also further categorize the pat-

terns of unserializable interleavings in atomicity violations, and

the last six rows in Table 2 show the numbers. Our study shows

that ORM-based web applications share the same patterns of unse-

rializable interleavings, and similar to raw-SQL applications, most

cases fall into pattern one.

All order violation bugs we study are caused by asynchronous ex-

ecution. Since Node.js and ORM frameworks have built-in support

for asynchronous execution, applications based on these frame-

works are more prone to order violation bugs. As a result, almost

all such bugs are found in those applications, and only one order

violation bug is found in raw-SQL applications.

5 RQ2: EFFECTS

In the following sections, we are going to distinguish the external

effects of races, which are exposed to users, and the internal effects

of races, which impact the internal storage. As we collect more

bugs from web applications using ORM frameworks to compare

them with races in raw-SQL and Node.js web applications, we will

also have a better understanding of requests races in all these three

types of web applications. Table 3 shows the overall results, and

we discuss the results in detail below.

5.1 External Effects of Races

We define the external effects as the effects that are exposed to the

users in a client-side browser.

On the high level, the external effects could be a crash where the

execution of a request handler terminates due to unhandled errors

and the server hosting the web application generates a generic

response corresponding to the errors, which may be difficult for

users to understand; errors where web applications catch some

underlying errors and generate a response with user-friendly error

messages; semantics where the misbehavior is related to specific

application logic; a hang where no responses are returned; and

performance where the server responds requests slowly.

Each of these types of external effects could manifest differently

for different types of racing resources, and some of them can be

further categorized into subtypes.

5.1.1 External effects: crashes due to unhandled errors. When a

request handler crashes due to unhandled errors, users will see a

blank page or generic error messages of internal application details

that are difficult to understand, as developers did not foresee such

a situation and did not write error-handling code. For request races

748

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Zhengyi Qiu, Shudi Shao, Qi Zhao, Hassan Ali Khan, Xinning Hui, and Guoliang Jin

resulting in crashes, we usually see words “crash” or “critical failure”

being mentioned in the bug report and discussion. In our studied

request races, we see that races causing crashes can happen in all

three types of web applications.

All the 32 studied request races that lead to crashes and race

on database are in ORM-based web applications, but none of them

are in raw-SQL web applications. The reason for the above phe-

nomenon is that raw-SQL application developers write their own

APIs interacting with the backend database, and the APIs check

the return values of queries being invoked, which includes infor-

mation of whether errors happen. These APIs have the mechanism

to catch and handle errors that happen during query execution. In

contrast, the ORM frameworks do not catch and handle such errors,

even though they provide various database APIs, and developers

sometimes miss the requirement of catching and handling errors.

ORM frameworks provide various APIs to issue queries from the

applications to the database. However, suchAPIs are not concurrency-

safe. For example, two or more INSERT queries with the same data

to insert could be sent at the same time. One could succeed, and

others would cause the database to raise duplicate entry errors

if there are unique constraints on the table schema. The error is

returned to the web application. If the error is not handled, the

request handler execution terminates, and the server returns a re-

sponse indicating internal server errors happened. When such a

problem happens in raw-SQL applications, the error is wrapped

in the return value to the interface method. The error is caught,

and a user-friendly message is rendered and returned to the users

instead of error messages with internal application information

that is difficult for users to understand.

The crashes on files happen when a concurrent remote request

deletes the files that the local request is going to use. The request

handler finds that the files do not exist. When such errors are not

handled, they lead to crashes.

The crash on shared-memory data structure is similar to the file

cases. The data structure may yet to be created or have been deleted

when it is accessed. The request handler finds the data structure

NULL, which raises an unhandled error leading to a crash.

5.1.2 External effects: explicit errors. To return an explicit error to

a client, an error will first be reported, either from the underlying

system resource or through application-specific checking, then

error-handling code in the web application will be invoked, and

error messages are finally returned to the users. The errors could

root from database, file system, or application logic.

For explicit database errors, they are caused by concurrent re-

quests violating database constraints. Because the errors are han-

dled properly by the application, they do not cause crashes, and

instead, application-rendered error messages are returned to the

users. The database error could be caused by duplicate entries in

a table with unique constraints, unlocking a table twice, invalid

transactions, and entries not being found.

For explicit file system errors, they could be caused by failures

while performing various file system operations, e.g., creating or

removing a directory, opening a stream, and serializing data from

files. Request handlers checking for such failures will return a page

telling users the file operation fails and may also put more details

about the error into a log.

For application errors, they could be caused by failures during

application-specific validation. Examples of such validations in-

clude presence validations that check if a data entry exists, null

validations that check if an object is valid, and permission checks

that check if a particular user is allowed to access some page.

5.1.3 External effects: semantics violations. Request races leading to

semantics violations account for 54% of the effects of request races

we study. In these bugs, results violating the intended semantics

of the web applications are delivered to clients. Next, we discuss

them based on the type of racing resources.

For request races involving database only, we categorize the vio-

lated semantics into five types.

First, a request may return a page with content violating some

semantics assumption, which could happen due to reading partially

written, and thus corrupted, data of a racing request. In Bugzilla

292544, a user not in the security group, which means that she

cannot access security-related bugs, can access a security bug but

the bug disappears upon a page refresh. These two inconsistent

results are returned because the query adding a security-related bug

and the query updating its flags are not wrapped in a transaction in

the request handler. If a user tries to access a list of recently created

bugs in between these two queries, some newly added bugs may

have their flags not being updated yet and are thus visible to users

not in the security group.

Secondly, a request may return a page that is obviously wrong,

the expected result of which could be determined by the user based

on the current page. In Gitlab 22946, a user cherry-picks a commit

by clicking on a link on the current page, but a commit that is

different from the one chosen by the user is returned. It is due to a

write happening between the time of cherry-picking and the time

of result rendering, and a different commit is returned and rendered

instead of the one cherry-picked by the user.

Thirdly, if a request includes a read query of some data just

being written, users often expect to see the just written data on the

returned page, but when the request race happens, the just written

data does not show up due to the request race. In Moodle 24678,

the user adds a chat message and expects the returned latest chat

message to be the just added one. However, if a concurrent request

adds a chat message having the same timestamp, the user will see

this message instead of the one from herself.

Fourthly, if a request does data modification and just tells users it

succeeds without verifying the results, the data could be overwrit-

ten by the racing request without being noticed. As a result, any

request assuming successful data modification is holding a wrong

assumption. In Bugzilla 926952, a user sends a request to rename a

milestone. As there are 100 bugs associated with the milestone, this

request also changes the milestone field of these bugs. The returned

page indicates that all the rename operations succeed. However, a

concurrent request overwrites the changes on the milestone field of

bug entries back to the old name. Later, when querying bugs with

the new milestone name, no bugs are returned. The 100 bugs are

lost because they are associated with the old milestone name but

no milestone matches the old name.

Finally, after the manifestation of a request race, a user could

see duplicate entries shown on the related web page when refetch-

ing. Such cases happen because there are no unique constraints

749

A Deep Study of the Effects and Fixes of Server-Side Request Races in Web Applications MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

on the database table schema, and duplicate entries are allowed

in the database. However, the application semantics indicate the

entry should be unique, which unfortunately the application is also

not currently checking or enforcing. Because there are no errors,

we categorize them as semantics bugs, which violates the unique

intention of application logic.

For race bugs involving file only, a user could see corrupted file

contents. In Drupal 1377740, a user reports that the file move op-

eration is not atomic and file contents are accessible before they

are fully written. In other words, users can view half-written file

contents. The file could also have mixed contents from different

concurrent requests, and WordPress 31767 is an example of this,

where the .htaccess file is corrupted by concurrent file writes. File

races could also corrupt the directory. In Moodle 19718, a user tries

to delete a forum, but when the race happens, the operation deletes

the entire Moodle data directory.

For race bugs involving cache only, a user could get wrong data,

e.g., being able to read data modified by another user or even data

that should not be accessible. In WordPress 25883, in a multi-site

setup with two networks A and B, when a user requests for a record

named “testmetakey” from network A, she may get the record from

network B if there is an entry with the same name. This bug is

caused by not differentiating cache keys with the same name but

from different sites. A user could also get a page with empty data

for some components. In Drupal 2879512, a user may get a response

with the path aliases field of a node being empty. It happens because

the path alias cache key was deleted by a concurrent, racing request

after the local request checks the existence of the cache key but

before the local request updates the value.

For race bugs involving both database and cache, a user could find

that the contents on the returned page do not show the modified

data just sent by the request, and this applies to all our studied

request races involving both database and cache. In WordPress

20786, when a user attaches an image to a post, the content of the

cache key is cleared first, then the database is updated, and finally

the cache loads the updated data from the database. If a concurrent

remote request accessing the same cache key happens in between

the cache clear and database update, the cache key is found to be

empty and stale data is loaded to the cache. When the attaching-

image request accesses the cache key after a database update, it is

a cache hit, and stale data is returned to the user.

For race bugs involving shared-memory data structure only, a

user could see the data structure stores partial or wrong data. In

Gitlab 63507, a user reports a record with nil Kubernetes token

value persisting in the storage. Such request races could also lead to

missing records. In MediaWiki 28179, a user uploads multiple files

concurrently. When the race happens, only a subset of file records

will be shown in the file list.

5.1.4 External effects: performance related. We label one request

race from one raw-SQL web application as performance and two

as hang in Node.js applications. The difference is that in the per-

formance case, the request waits a long time to get responded to,

while in the hang cases, the request never gets responded to.

The request race being labeled as performance is WordPress

2088. When the race happens, repeated pingback operations are

issued, and the server is slowed down quickly due to this.

One request race being labeled as hang is fiware-pep-steelskin

269. The hang happens because the first request adds itself to listen

for certain events and then waits for the event, while the second

request clears the event listeners in between these two operations.

As a result, the first request never receives the event and appears

to be blocked forever. The other request race being labeled as hang

is from deepstream.io. The first request stops the server. While

handling the first request, all clients are disconnected, and the

handler will fire a stop event. In between these two operations, the

second request attempts to connect the server and succeeds, which

prevents the stop event from being fired. As a result, the server

process hangs and needs to be manually killed.

5.2 Request Races with Latent Effects

We consider a request race to have latent effects where the concur-

rent requests that cause the erroneous states differ from the request

that exposes the external effects of the bug to the client-side users.

In other words, the failure is revealed by a subsequent request that

does not happen concurrently with the racing request pairs. We

consider a request race non-latent if its misbehavior is exposed by

concurrent request pair in the request race.

Request races with external effects of crash, performance, and

hang are all non-latent. For request races having error messages,

they are non-latent if errors are first raised by the database or due to

file operation failures. However, some of the errors raised by appli-

cation validation are latent, meaning a third request will be needed

to expose the failure. When this is the case, the application valida-

tion is done in the third request but not in the two requests involved

in the race. For example, in Moodle 59854, a user can be enrolled

twice in the same forum, which means that there can be duplicate

entries in the forum_subscription table. This violates the applica-

tion logic, where one user should be enrolled once in the forum,

and the user identity should appear once in the forum_subscription

table. There are no error messages shown when enrolling the user

for the second time. However, when fetching the user subscription

list of the forum, the application checks if every user identity is

unique in the list, and an application error is raised if the validation

fails. In this bug, the error message is exposed by a subsequent

fetching list request, which does not have to be concurrent with

the user enrollment requests. As a result, this is a latent bug with

an error message effect.

Request races with semantics issues could be latent or non-latent.

For races on database, if the request has a read operation after a

write or the request fetches data only, an experienced user can de-

termine if the returned page matches the expected results, and such

bugs are non-latent. This applies to the first three subcategories of

request races leading to semantics violations we list in Table 3.

The remaining two subcategories are latent. Request races could

break data silently if unwanted data overwritten is not noticed. If

such silent data overwriting is not handled properly, it could lead to

failures that are difficult to understand and diagnose and, sometimes,

great data loss. The previously discussed Bugzilla 926952 is such a

request race.

For bugs having duplicate entries with no database errors, addi-

tional application semantics are needed to determine if such dupli-

cate entries are allowed.

750

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Zhengyi Qiu, Shudi Shao, Qi Zhao, Hassan Ali Khan, Xinning Hui, and Guoliang Jin

Table 4: Latent bugs: racing-resource types for internal effects, root cause patterns, manifestation conditions, and unserializ-

able patterns for atomicity violation

raw-SQL Django Hibernate Laravel Ruby on Rails Node.js Total

Number of bugs studied 43 15 1 2 27 5 93

Racing-Resource Types

Database single-table 32 12 0 2 23 3 72

Database multi-table 1 2 0 0 1 0 4

File 5 1 1 0 1 0 8

Cache only 4 0 0 0 2 0 6

Shared-memory data structure 1 0 0 0 0 2 3

Root Cause Patterns and Manifestation Conditions

Atomicity violation with two instances of the same request handler 31 11 1 2 25 4 74

Atomicity violation with two different request handlers 11 4 0 0 2 0 17

Order violation within one request handler 1 0 0 0 0 1 2

Unserializable Patterns for Atomicity Violation

(𝜖 |𝑅)𝑅′ (𝐴 |𝑊 |𝐷) (𝐴′ |𝑊 ′ |𝐷′ |𝑅′) 42 15 1 2 27 4 91

For races on file, if a request only modifies a file or directory

without reading the content later, request races involving such

requests are latent, as another request that read the file or directory

content is needed to detect the problem.

For races on cache only, if the involved request handler modi-

fies the value of a cache key, the response usually indicates if the

modification succeeds without returning contents of the cached

data. This type is latent, and users need to check the cached data

to verify if misbehaviors happen with an extra request.

For races on cache and database, these are all non-latent because

one request involved in such request races first clears the cache, then

loads data from database to cache, and finally returns the values

in cache to users. When the request races are triggered, users can

immediately notice if misbehavior happens by investigating the

contents on the returned page, as the returned data will be stale.

For races on shared-memory data structure, when the involved

requests do modification without reading the data structure, request

races are latent as users need to send another request to determine

if something is wrong.

Overall, we find that latent request races are more challenging to

handle. They may either need extra requests to expose the external

effects or need application-specific semantics knowledge, and thus

are more critical.

5.3 Internal Effects of Latent Request Races

To better handle latent request races and catch them early, we

analyze the latent bugs in more detail. Specifically, we pay close

attention to how the data in the persistent storage are erroneous to

achieve a better understanding of what tools can be developed to

detect such bugs before they are exposed to users.

Table 4 shows the overall results. Latent request races could

involve only a single type of racing resource. We find latent request

races involving all types of racing resources, i.e., database, file,

cache, and shared-memory data structures.

For latent request races on database, the internal effects include

wrong data in a single table and inconsistent data between tables

having application logic correlation.

The majority of latent races involve a single table. Internally, as

they exhibit the atomicity violation pattern, where a remote write,

append, or delete operation happens between two local operations,

the second operation will be affected by the remote operation, but

the internal effect requires a subsequent request fetching the just

changed data to make the misbehavior externally visible.

Web applications could use multiple tables to store data that are

correlated. In WordPress, post data are stored in a post table, and

data correlated to the post are stored in a post_meta table, which is

also used for recovering a trashed post. However, when the race

happens, the data between these two tables can be inconsistent. For

example, a comment could not be backed up in the post_meta table

and disappears when recovering the post, to which the comment

belongs. Note that such correlation is inferred from web application

logic, but no validations or constraints enforce the correlation in

the application code or the database schema.

For latent request races on files, the internal effects are corrupted

file or directory, where the file is corrupted with incomplete or

wrong data or the directory structure is broken. For latent request

races on cache, the internal effects could be overwritten cache

data or cache key not being updated due to key deletion. For latent

request races on shared-memory data structures, the internal effects

could be shared data structures containing wrong data.

In Table 4, we also show the root cause patterns, manifestation

conditions, and unserializable patterns for atomicity violations,

from which we can see that some request races violating order

assumptions also require a subsequent fetching request to expose

the misbehaviors, and are thus latent.

6 RQ3: FIXES

With the context of feral concurrency control presented in Section 2,

fix strategies can be categorized as using database transactions, var-

ious locking strategies, validations, and semantics changes. We do

not find request races fixed by using the application-level associa-

tion primitive. Table 5 shows the overall results. Below, we detail

each fix strategy.

Transactions.Developers fix the races bywrapping queries into

a transaction to prevent database from being in a state where mixed

contents from concurrent requests exist. In MediaWiki 129462,

developers wrap a select and insert query into a transaction to

avoid duplicate entries.

More interestingly, request races could also sometimes be fixed

by removing certain transactions, and we find four such cases in

751

A Deep Study of the Effects and Fixes of Server-Side Request Races in Web Applications MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

Table 5: Overall results on fix strategies

raw-SQL Django Hibernate Laravel Ruby on Rails Node.js Total

Number of bugs studied 109 35 5 3 86 11 249

Database

Transaction: Add transaction 4 1 0 1 1 0 7

Transaction: Remove transaction 0 0 0 0 4 0 4

Locking: Database lock 11 9 0 0 15 2 37

Locking: Distributed lock 0 0 0 0 2 0 2

Validation: Presence 1 0 0 0 1 0 2

Validation: Uniqueness 2 0 0 0 1 0 3

Validation: Custom constraint 13 4 0 1 2 0 20

Semantics: Catch and handle errors on app side 5 9 1 0 13 0 28

Semantics: Add database-side uniqueness constraint 7 0 0 0 5 1 13

Semantics: Handle conflict in query 6 0 0 0 3 0 9

Semantics: Rescue database data on race 2 2 0 0 1 0 5

Semantics: Frontend 4 0 0 0 1 0 5

Other semantics 14 3 0 0 10 0 27

Order enforcement 0 3 0 0 12 1 16

File

Locking: File lock 5 2 0 0 0 0 7

Locking: Custom lock based on database entries 1 0 0 0 0 0 1

Validation: Presence 5 0 0 1 0 0 6

Semantics: Catch and handle errors on app side 6 0 0 0 2 0 8

Semantics: Write to unique file or dir 6 0 1 0 3 0 10

Semantics: Read in fixed chunk size 1 0 0 0 0 0 1

Order enforcement 0 0 0 0 1 0 1

Cache only

Validation: Custom constraint 4 0 0 0 0 0 4

Semantics: Check return value of cache fetch 1 0 0 0 0 0 1

Semantics: Write to unique cache key 3 0 0 0 0 0 3

Semantics: Use correct API 0 0 0 0 2 0 2

Semantics: Use new storage 2 0 0 0 0 0 2

Cache with database

Validation: Custom constraint 2 0 0 0 0 0 2

Semantics: Postpone cache operation after database update 3 1 0 0 0 0 4

Shared-memory data structure

Locking: Thread lock 0 0 2 0 1 1 4

Validation: Custom constraint 0 0 1 0 1 5 7

Semantics: Catch and handle errors on app side 0 0 0 0 1 0 1

Semantics: Change storage to database 1 0 0 0 0 0 1

Semantics: Include unique value in condition 0 0 0 0 1 0 1

Order enforcement 0 1 0 0 3 1 5

our studied request races. In Discourse 3854, users report that they

are not being notified after a staff member responds to their posts.

Users can only find out the response by checking the messages

page in their profiles. When a staff member responds to a post, a

message entry is created in the database. Right after the message

creation, an asynchronous job is dispatched to alert users of the

new response message. However, the message creation operation

is wrapped in a transaction. When the asynchronous job fetches

the just created message, the transaction is not committed yet, and

the job fetches nothing. As a result, users are not notified of the

response from staff. By removing the transaction, the asynchronous

job can read the necessary data to notify the right users about the

staff’s response.

Locking. For request races on database, we see developers us-

ing two types of locks to fix races, which are database locks and

distributed locks.

Regarding the database lock, it could be the generic table locks

in the database. In Bugzilla 292544, developers lock the whole ta-

ble to prevent remote concurrent reads get in-progress local write

contents. It could be the generic row locks provided by database.

In MediaWiki 51581, developers add “FOR UPDATE” in the query

string, which locks the selected entry and avoids concurrent modi-

fication. It could also be a lock implemented using entries in the

database. In Drupal 1182754, developers create an entry named as

advagg_insert_bundle_db in the semaphore table to store the lock

versions and avoid duplicate entries in database.

Distributed lock is a cross-process lock. It synchronizes execu-

tions between requests and can be implemented using Redis. In

Discourse 8819, distributed locks are used to avoid inconsistent

column contents while processing a post.

For races on file, we see file locks and custom locks implemented

using database entries. In WordPress 31767, file locks are used

to prevent concurrent file writing, which avoids corrupting the

.htaccess file. In WordPress 34878, developers implement a lock

by entries in the wp_option table to prevent critical failures that

happen because of concurrent file deletion during core updates.

For races on shared-memory data structure, thread locks are

used. In spree 6719, developers use a random number generator

using thread locks to avoid writing entries with the same random

number to the database.

We do not see any request races on cache-related request races

being fixed with locks.

752

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Zhengyi Qiu, Shudi Shao, Qi Zhao, Hassan Ali Khan, Xinning Hui, and Guoliang Jin

Constraint validations. For races on database, we find that

developers use presence validation, uniqueness validation, and cus-

tom constraint validation to fix races. Note that, the concept of

constraint validation is borrowed from the context of feral concur-

rency control primitives provided by ORM frameworks. We extend

it to the scope of raw-SQL web applications, and we also extend it

to operations not related to database accesses.

Presence validation checks if a given entry is null or empty.

In Gitlab 6881, the fix checks if a given project is null and skips

removing records of the associated artifacts if the check finds that

the project is not null.

Uniqueness validation checks if a given entry is unique by com-

paring it with other records in the database. In other words, a

SELECT query is sent checking if the unique field value of the

entry appears in the database. Then, the application would issue

an INSERT or an UPDATE query based on the SELECT query re-

sult. In Moodle 46651, developers use the uniqueness validation to

avoid duplicate entries, where a SELECT query is sent to check if

the record to be inserted exists. If it does not, an INSERT query is

issued; if it does, an UPDATE query updating the existing record

with current parameters is issued.

Custom constraint validation could be some checks related to

specific application logic, and without the check, races can happen

and cause misbehaviors. The check could be on a local variable hold-

ing content from a file, a query result from the database, or values

generated during the application execution. In Bugzilla 391073, the

race is fixed by checking if _throw_error function is called within

eval(), and the fix skips unlocking the table if the condition is true.

In WordPress 11073, the race is fixed by reading and checking the

post status, and the fix skips adding the comment if the post has a

trash status.

For races on file, we find that developers use presence validation

to fix races. In MediaWiki 51391, the failure of a mkdir operation

could be caused by a concurrent request doing the same operation.

The fix adds a presence checking, which checks if the directory

already exists. If the mkdir fails because the directory has been

created by a concurrent request, no warnings or errors should be

passed to the users causing panic. This fix pattern is also used in

Drupal, Moodle, and October. We do not find custom constraint

validation for races on file.

For races involving cache, we only find developers use custom

constraint validation but no uniqueness or presence validation, and

the check is also specific to application logic. In MediaWiki 94491,

the fix adds a check to see if a user rename status is finished in

the database but not in the cache. The cache will be purged if the

condition is true and loads the latest data from the database. In

Drupal 2879512, the fix checks if the cache entry was created but

now is deleted when executing the code line and skips doing certain

operations if the condition is true, which avoids corrupting cache

with incomplete data.

Our results show that even in ORM-based web applications,

the number of request races fixed by adding constraint validation

is small. For the two types of constraint validations that can be

found in our studied request races, the I-confluence of the presence

constraint depends and the uniqueness constraint is not I-confluent.

Therefore, while adding these constraint validations can reduce the

racing window, the request races may still not be completed fixed.

For custom constraint validations, their I-confluence needs to be

investigated case-by-case, and we leave it for future work.

Semantics changes. Partly due to the small number of request

races fixed by using constraint validations, 49% of request races are

fixed involving semantics changes. There are various fix strategies

that change the application logic, and we are going to discuss some

major approaches.

Catch and handle errors on the application side is a commonly

seen fix strategy. By properly handling the errors, users will not

panic by a crash that only provides difficult-to-understand infor-

mation and instead with informative, case-specific error messages.

On request races involving cache only, the fix strategy “check

return value of cache fetch” is similar. In WordPress 15545, the re-

quest handler updates cache and then reads and returns the updated

data to users. However, a concurrent cache key deletion could make

the cache read in the first request handler return an empty array.

Developers think valid information, even stale, is better than an

empty array. The fix first stores stale cache data into a variable. If

the cache read gets an empty array, stale data is returned.

For races on database, developers would add uniqueness con-

straints to the table schema, which prevents duplicate entries on the

database side. Theywould further add “ONCONFLICT” in the query

string, so the database updates fields of duplicate entries instead

of raising an error. In order to ensure data integrity, developers

refetch the just updated data to see if any semantic assumptions are

violated. In WordPress 22023, developers refetch the just inserted

entry and delete duplicates if more than one is returned. Develop-

ers also fix races by disabling a button in the frontend to prevent

concurrent requests from happening. With these subcategories of

semantics changes, we label 27 request races involving database as

other semantics changes, as the semantics changes in these fixes

are very diverse and application specific.

For races on file, developers would write contents to unique

temp files and then use atomic rename to avoid corrupted files.

One request race is fixed by reading a file in a fixed chunk size.

In Moodle 41291, the file size was stored in a local variable, and

the file size was used to read file content. However, a concurrent

request could modify the file and changes the file size. As a result,

truncated or corrupted file content could be read. The fix reads the

file in a fixed chunk size until reaching the end of the file.

For races on cache, other than checking the return value of

cache fetching, developers could also fix request races by directing

writes to unique cache keys, using correct cache APIs, or using new

storage. The first two cases are intuitive, and we give an example

of the third case. In MediaWiki 105105, the race is fixed by using

WANObjectCache, which broadcasts cache updates to all sites so

that no site will have stale data to be returned to users.

For races on cache and database, developers could enforce the

cache update to happen after database updates, making cache load

the latest data after the database is updated.

For races on shared-memory data structure, change storage to

database and include unique value in condition are used to fix two

request races.

Order enforcement. For order violation races, developers fix

them by enforcing the order, which can be achieved by moving the

code snippet, registering the function with the event happening at

the proper timing, adding delay, and using synchronized operations.

753

A Deep Study of the Effects and Fixes of Server-Side Request Races in Web Applications MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

7 DISCUSSION

Next, we discuss future research opportunities enabled by our re-

sults in combating request races.

Pattern-based detection. In our studied bugs, ORM-based web

applications have many races manifesting as order violations, while

raw-SQL web applications have only one. While techniques pro-

posed for detecting races manifesting as atomicity violations in

raw-SQL web applications [72] can be adapted for ORM-based web

applications, we need new techniques for detecting races manifest-

ing as order violations in ORM-based web applications.

API-usage-guided detection.As discussed in Section 5.1.1, ORM

frameworks provide APIs that are not always concurrency-safe, and

programmers are expected to handle errors returned by these APIs.

However, developers of ORM-based web applications could have a

misunderstanding of these APIs or fail to handle errors returned by

these APIs. Future research could detect API misusages and missing

error handling in ORM-based web applications.

Effect-oriented detection.Our results show that more than half

of the collected bugs do not have an explicit error message alerting

users that misbehavior happens. Future work can use an invariant-

based method to detect such bugs.

Bug fixing. Our results show that developers often change ap-

plication logic to fix races, and this is true even for web applications

built on top of ORM frameworks that provide feral concurrency-

control mechanisms. Future work on race fixing should be aware

of this finding. If generic synchronization mechanisms are used for

automated fixing, the evaluation may need to compare automated

patches with manual ones.

8 RELATEDWORK

A lot of research efforts have been spent on races and concur-

rency bugs in multi-threaded programs. Researchers have con-

ducted thorough empirical characteristic studies [45, 64] and the

study results guide the development of tools for various purposes,

e.g., bug detection [39, 40, 44, 48, 65, 74, 83, 84], program test-

ing [47, 58, 69, 75, 77, 81], failure diagnosis [34, 35, 51, 53, 66],

and fixing [50, 52, 61, 62]. Researchers have also proposed tech-

niques targeting process races on the operating-system level [55]

and distributed concurrency bugs in distributed and cloud sys-

tems [56, 57, 59, 60, 63]. As argued in our previous study [72], these

techniques target races inside the system layer, and they are not

effective for request races, which are races in the web applications

hosted on top of the system layer.

Specific to the external and internal effects of concurrency bugs,

the previous study [45] focuses on concurrency bugs in MySQL,

which is a multi-threaded program. While MySQL is commonly

used as the backend database in web applications, concurrency

bugs in MySQL are different from request races in web applications,

which follows from the same arguments made in our previous

study [72]. Nevertheless, we follow their methodology and get

inspiration from their study to conduct ours.

Also note that our study focuses on request races on the server-

side, and thus we have a different focus compared with recent work

that focuses on client-side race detection [33, 38, 49, 67, 70, 73, 82]

and fixing [32].

On the studies of concurrency bugs in web applications, while

the one by us [72] is the most comprehensive and the state-of-

the-art, there are also two related studies on concurrency bugs in

applications developed on top of the Node.js framework [43, 78].

However, the number of request races in web applications covered

by these two studies is only 11 [72], and the remaining concurrency

bugs are not on the server-side or from applications that are not

web applications. While we focus on request races in this work, a

study focusing on deadlocks has also been conducted [71].

9 THREATS TO VALIDITY

In this section, we describe several potential validity threats our

study may be subject to and our ways to address them.

(1) The applications in our study cannot represent all real-world

ORM-based web applications. To minimize this threat, we choose

popular web applications with more than 2K stars and exclude those

inactive ones since 2017. Our application selection covers popular

ORM frameworks written in various programming languages.

(2) Wemaymiss relevant bug reports while searching for races in

the bug tracking system. We mitigate this threat by using keyword

search in both bug descriptions and discussion as well as the commit

history. We also include all request races from the previous study.

To this end, our numbers of request races from raw-SQL and ORM-

based web applications are close.

(3) We inspect bug reports manually, which may be subject to

human errors while characterizing request races. To alleviate this

threat, we first double-check the characterization results in our

previous study. Then, two authors first independently investigate

the bugs, including those that have been previously studied and

those newly collected from ORM-based web applications, with

all available resources, including bug description and discussion,

patches, and source code. Once they finish, they cross-check their

results and reach a consensus.

10 CONCLUSION

Request races impose a great challenge to the reliability and secu-

rity of web applications. To better understand request races, we

complement the state-of-the-art study by augmenting more request

races from ORM-based web applications in different programming

languages. We investigate the external effects of request races and

characterize those lead to semantics violations. We further divide re-

quest races into latent and non-latent and study the internal effects

of latent ones. We summarize various fix strategies for raw-SQL and

ORM-based web applications in the context of feral concurrency

control primitives available in ORM frameworks. We expect our

results to be useful to guide the design and development of future

tools for combating request races.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers, from

both the program committee and the shadow program committee,

for their valuable feedback and helpful suggestions. This project

was partly supported by the National Science Foundation under

the grant CCF-2008056.

754

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Zhengyi Qiu, Shudi Shao, Qi Zhao, Hassan Ali Khan, Xinning Hui, and Guoliang Jin

REFERENCES
[1] AlchemyCMS - AlchemyCMS is a Rails CMS engine. https://github.com/

AlchemyCMS/alchemy_cms.
[2] Broadleaf Commerce - Enterprise eCommerce framework based on Spring. https:

//github.com/BroadleafCommerce/BroadleafCommerce.
[3] Bugzilla. https://bugzilla.mozilla.org/.
[4] Canvas LMS - The Open LMS by Instructure, Inc. https://github.com/instructure/

canvas-lms.
[5] Danbooru - A taggable image board written in Rails. https://github.com/

danbooru/danbooru.
[6] diaspora* - A privacy-aware, distributed, open source social network. https:

//github.com/diaspora/diaspora.
[7] Discourse - A platform for community discussion. Free, open, simple. https:

//github.com/discourse/discourse.
[8] DNN Platform Issue Tracker. https://dnntracker.atlassian.net.
[9] Drupal. https://git.drupalcode.org/project/drupal.
[10] Gitlab. https://about.gitlab.com.
[11] LinuxFr.org - A French-speaking website about Free software / hardware / culture

/ stuff. https://github.com/linuxfrorg/linuxfr.org.
[12] MediaWiki - The collaborative editing software that runs Wikipedia. https:

//github.com/wikimedia/mediawiki.
[13] Moodle Tracker. https://tracker.moodle.org/.
[14] October - Self-hosted CMS platform based on the Laravel PHP Framework. https:

//github.com/octobercms/october.
[15] Odoo - A suite of web based open source business apps. https://github.com/

odoo/odoo.
[16] OpenMRS - Medical Record System. http://openmrs.org.
[17] OpenProject - OpenProject is the leading open source project management

software. https://github.com/opf/openproject.
[18] Oscar - Domain-driven e-commerce for Django. https://github.com/django-

oscar/django-oscar.
[19] Pixelfed - Photo Sharing. For Everyone. https://github.com/pixelfed/pixelfed.
[20] PostHog - PostHog provides open-source product analytics that you can self-host.

https://github.com/PostHog/posthog.
[21] Redash - Make Your Company Data Driven. Connect to any data source, easily

visualize, dashboard and share your data. https://github.com/getredash/redash.
[22] Redmine. https://www.redmine.org/.
[23] ROR Ecommerce - Ruby on Rails Ecommerce platform, perfect for your small

business solution. https://github.com/drhenner/ror_ecommerce.
[24] Saleor Commerce - A modular, high performance, headless e-commerce platform

built with Python, GraphQL, Django, and React. https://github.com/saleor/saleor.
[25] Sentry - Sentry is cross-platform application monitoring, with a focus on error

reporting. https://github.com/getsentry/sentry.
[26] Sharetribe - Sharetribe Go is a source available marketplace software, also avail-

able as a hosted, no-code SaaS product. https://github.com/sharetribe/sharetribe.
[27] Spree - Open Source headless multi-language/multi-currency/multi-store eCom-

merce platform. https://github.com/spree/spree.
[28] Weblate - Web based localization tool with tight version control integration.

https://github.com/WeblateOrg/weblate.
[29] WordPress Trac. https://core.trac.wordpress.org/.
[30] Zulip - Zulip server and web app — powerful open source team chat. https:

//github.com/zulip/zulip.
[31] Aaron Hnatiw, Security Compass. Moving Beyond The OWASP Top 10, Part 1:

Race Conditions. https://resources.securitycompass.com/blog/moving-beyond-
the-owasp-top-10-part-1-race-conditions-2.

[32] Christoffer Quist Adamsen, Anders Møller, Rezwana Karim, Manu Sridharan,
Frank Tip, and Koushik Sen. 2017. Repairing Event Race Errors by Controlling
Nondeterminism. In Proceedings of the 39th International Conference on Software
Engineering (Buenos Aires, Argentina) (ICSE ’17). IEEE Press, Piscataway, NJ,
USA, 289–299. https://doi.org/10.1109/ICSE.2017.34

[33] Christoffer Quist Adamsen, Anders Møller, and Frank Tip. 2017. Practical Initial-
ization Race Detection for JavaScriptWeb Applications. Proc. ACM Program. Lang.
1, OOPSLA, Article 66 (Oct. 2017), 22 pages. https://doi.org/10.1145/3133890

[34] Joy Arulraj, Po-Chun Chang, Guoliang Jin, and Shan Lu. 2013. Production-run
Software Failure Diagnosis via Hardware Performance Counters. In Proceedings of
the Eighteenth International Conference on Architectural Support for Programming
Languages and Operating Systems (Houston, Texas, USA) (ASPLOS ’13). ACM,
New York, NY, USA, 101–112. https://doi.org/10.1145/2451116.2451128

[35] Joy Arulraj, Guoliang Jin, and Shan Lu. 2014. Leveraging the Short-term Memory
of Hardware to Diagnose Production-run Software Failures. In Proceedings of the
19th International Conference on Architectural Support for Programming Languages
and Operating Systems (Salt Lake City, Utah, USA) (ASPLOS ’14). ACM, New York,
NY, USA, 207–222. https://doi.org/10.1145/2541940.2541973

[36] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein,
and Ion Stoica. 2014. Coordination Avoidance in Database Systems. Proc. VLDB
Endow. 8, 3 (nov 2014), 185–196. https://doi.org/10.14778/2735508.2735509

[37] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein,
and Ion Stoica. 2015. Feral Concurrency Control: An Empirical Investigation of

Modern Application Integrity. In Proceedings of the 2015 ACM SIGMOD Interna-
tional Conference on Management of Data (Melbourne, Victoria, Australia) (SIG-
MOD ’15). Association for Computing Machinery, New York, NY, USA, 1327–1342.
https://doi.org/10.1145/2723372.2737784

[38] Marina Billes, Anders Møller, and Michael Pradel. 2017. Systematic Black-
box Analysis of Collaborative Web Applications. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (Barcelona, Spain) (PLDI 2017). ACM, New York, NY, USA, 171–184.
https://doi.org/10.1145/3062341.3062364

[39] Swarnendu Biswas, Jipeng Huang, Aritra Sengupta, and Michael D. Bond. 2014.
DoubleChecker: Efficient Sound and Precise Atomicity Checking. In Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Edinburgh, United Kingdom) (PLDI ’14). ACM, New York, NY,
USA, 28–39. https://doi.org/10.1145/2594291.2594323

[40] Michael D. Bond, Katherine E. Coons, and Kathryn S. McKinley. 2010. PACER:
Proportional Detection of Data Races. In Proceedings of the 31st ACM SIGPLAN
Conference on Programming Language Design and Implementation (Toronto,
Ontario, Canada) (PLDI ’10). ACM, New York, NY, USA, 255–268. https:
//doi.org/10.1145/1806596.1806626

[41] Jack Cable. 2016. Race Condition in Redeeming Coupons. https://hackerone.com/
reports/157996.

[42] Lucian Constantin. 2014. Withdrawal vulnerabilities enabled bitcoin theft from
Flexcoin and Poloniex. https://www.pcworld.com/article/2104940/withdrawal-
vulnerabilities-enabled-bitcoin-theft-from-flexcoin-and-poloniex.html.

[43] James Davis, Arun Thekumparampil, and Dongyoon Lee. 2017. Node.Fz: Fuzzing
the Server-Side Event-Driven Architecture. In Proceedings of the Twelfth European
Conference on Computer Systems (Belgrade, Serbia) (EuroSys ’17). ACM, New York,
NY, USA, 145–160. https://doi.org/10.1145/3064176.3064188

[44] Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: Efficient and Precise
Dynamic Race Detection. In Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation (Dublin, Ireland) (PLDI ’09).
ACM, New York, NY, USA, 121–133. https://doi.org/10.1145/1542476.1542490

[45] Pedro Fonseca, Cheng Li, Vishal Singhal, and Rodrigo Rodrigues. 2010. A Study
of the Internal and External Effects of Concurrency Bugs. In 2010 IEEE/IFIP
International Conference on Dependable Systems Networks (DSN). 221–230. https:
//doi.org/10.1109/DSN.2010.5544315

[46] Egor Homakov. 2015. Hacking Starbucks for unlimited coffee. https://
sakurity.com/blog/2015/05/21/starbucks.html.

[47] Shin Hong, Jaemin Ahn, Sangmin Park, Moonzoo Kim, and Mary Jean Harrold.
2012. Testing Concurrent Programs to Achieve High Synchronization Coverage.
In Proceedings of the 2012 International Symposium on Software Testing and Anal-
ysis (Minneapolis, MN, USA) (ISSTA 2012). ACM, New York, NY, USA, 210–220.
https://doi.org/10.1145/2338965.2336779

[48] Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. 2014. Maximal Sound Pre-
dictive Race Detection with Control Flow Abstraction. In Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(Edinburgh, United Kingdom) (PLDI ’14). ACM, New York, NY, USA, 337–348.
https://doi.org/10.1145/2594291.2594315

[49] Casper S. Jensen, Anders Møller, Veselin Raychev, Dimitar Dimitrov, and Martin
Vechev. 2015. Stateless Model Checking of Event-driven Applications. In Proceed-
ings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (Pittsburgh, PA, USA) (OOPSLA
2015). ACM, NewYork, NY, USA, 57–73. https://doi.org/10.1145/2814270.2814282

[50] Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit. 2011. Automated
Atomicity-violation Fixing. In Proceedings of the 32Nd ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (San Jose, California,
USA) (PLDI ’11). ACM, New York, NY, USA, 389–400. https://doi.org/10.1145/
1993498.1993544

[51] Guoliang Jin, Aditya Thakur, Ben Liblit, and Shan Lu. 2010. Instrumentation and
Sampling Strategies for Cooperative Concurrency Bug Isolation. In Proceedings
of the ACM International Conference on Object Oriented Programming Systems
Languages and Applications (Reno/Tahoe, Nevada, USA) (OOPSLA ’10). ACM,
New York, NY, USA, 241–255. https://doi.org/10.1145/1869459.1869481

[52] Guoliang Jin, Wei Zhang, Dongdong Deng, Ben Liblit, and Shan Lu. 2012. Au-
tomated Concurrency-bug Fixing. In Proceedings of the 10th USENIX Confer-
ence on Operating Systems Design and Implementation (Hollywood, CA, USA)
(OSDI’12). USENIX Association, Berkeley, CA, USA, 221–236. http://dl.acm.org/
citation.cfm?id=2387880.2387902

[53] Baris Kasikci, Benjamin Schubert, Cristiano Pereira, Gilles Pokam, and George
Candea. 2015. Failure Sketching: A Technique for Automated Root Cause Diagno-
sis of In-production Failures. In Proceedings of the 25th Symposium on Operating
Systems Principles (Monterey, California) (SOSP ’15). ACM, New York, NY, USA,
344–360. https://doi.org/10.1145/2815400.2815412

[54] Simon Koch, Tim Sauer, Martin Johns, and Giancarlo Pellegrino. 2020. Raccoon:
Automated Verification of Guarded Race Conditions in Web Applications. In
Proceedings of the 35th Annual ACM Symposium on Applied Computing (Brno,
Czech Republic) (SAC ’20). ACM, New York, NY, USA, 1678–1687. https://doi.org/
10.1145/3341105.3373855

755

A Deep Study of the Effects and Fixes of Server-Side Request Races in Web Applications MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

[55] Oren Laadan, Nicolas Viennot, Chia-Che Tsai, Chris Blinn, Junfeng Yang, and
Jason Nieh. 2011. Pervasive Detection of Process Races in Deployed Systems. In
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles
(Cascais, Portugal) (SOSP ’11). ACM, New York, NY, USA, 353–367. https://
doi.org/10.1145/2043556.2043589

[56] Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu, and Haryadi S. Gu-
nawi. 2016. TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs in
Datacenter Distributed Systems. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Operating
Systems (Atlanta, Georgia, USA) (ASPLOS ’16). ACM, New York, NY, USA, 517–530.
https://doi.org/10.1145/2872362.2872374

[57] Guangpu Li, Haopeng Liu, Xianglan Chen, Haryadi S. Gunawi, and Shan Lu. 2019.
DFix: Automatically Fixing Timing Bugs in Distributed Systems. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Phoenix, AZ, USA) (PLDI 2019). ACM, New York, NY, USA,
994–1009. https://doi.org/10.1145/3314221.3314620

[58] Guangpu Li, Shan Lu, Madanlal Musuvathi, Suman Nath, and Rohan Padhye.
2019. Efficient Scalable Thread-safety-violation Detection: Finding Thousands of
Concurrency Bugs During Testing. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles (Huntsville, Ontario, Canada) (SOSP ’19). ACM,
New York, NY, USA, 162–180. https://doi.org/10.1145/3341301.3359638

[59] Haopeng Liu, Guangpu Li, Jeffrey F. Lukman, Jiaxin Li, Shan Lu, Haryadi S.
Gunawi, and Chen Tian. 2017. DCatch: Automatically Detecting Distributed
Concurrency Bugs in Cloud Systems. In Proceedings of the Twenty-Second Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (Xi’an, China) (ASPLOS ’17). ACM, New York, NY, USA, 677–
691. https://doi.org/10.1145/3037697.3037735

[60] Haopeng Liu, Xu Wang, Guangpu Li, Shan Lu, Feng Ye, and Chen Tian. 2018.
FCatch: Automatically Detecting Time-of-fault Bugs in Cloud Systems. In Pro-
ceedings of the Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems (Williamsburg, VA, USA)
(ASPLOS ’18). ACM, New York, NY, USA, 419–431. https://doi.org/10.1145/
3173162.3177161

[61] Peng Liu, Omer Tripp, and Charles Zhang. 2014. Grail: Context-aware Fixing
of Concurrency Bugs. In Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering (Hong Kong, China) (FSE 2014).
ACM, New York, NY, USA, 318–329. https://doi.org/10.1145/2635868.2635881

[62] Peng Liu and Charles Zhang. 2012. Axis: Automatically Fixing Atomicity Vi-
olations Through Solving Control Constraints. In Proceedings of the 34th Inter-
national Conference on Software Engineering (Zurich, Switzerland) (ICSE ’12).
IEEE Press, Piscataway, NJ, USA, 299–309. http://dl.acm.org/citation.cfm?id=
2337223.2337259

[63] Jie Lu, Feng Li, Lian Li, and Xiaobing Feng. 2018. CloudRaid: Hunting Concur-
rency Bugs in the Cloud via Log-Mining. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE
2018). ACM, New York, NY, USA, 3–14. https://doi.org/10.1145/3236024.3236071

[64] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learning from
Mistakes: A Comprehensive Study on Real World Concurrency Bug Characteris-
tics. In Proceedings of the 13th International Conference on Architectural Support
for Programming Languages and Operating Systems (Seattle, WA, USA) (ASP-
LOS XIII). Association for Computing Machinery, New York, NY, USA, 329–339.
https://doi.org/10.1145/1346281.1346323

[65] Brandon Lucia, Joseph Devietti, Karin Strauss, and Luis Ceze. 2008. Atom-Aid:
Detecting and Surviving Atomicity Violations. In Proceedings of the 35th Annual
International Symposium on Computer Architecture (ISCA ’08). IEEE Computer
Society, Washington, DC, USA, 277–288. https://doi.org/10.1109/ISCA.2008.4

[66] Brandon Lucia, Benjamin P. Wood, and Luis Ceze. 2011. Isolating and Understand-
ing Concurrency Errors Using Reconstructed Execution Fragments. In Proceedings
of the 32Nd ACM SIGPLAN Conference on Programming Language Design and
Implementation (San Jose, California, USA) (PLDI ’11). ACM, New York, NY, USA,
378–388. https://doi.org/10.1145/1993498.1993543

[67] Erdal Mutlu, Serdar Tasiran, and Benjamin Livshits. 2015. Detecting JavaScript
Races That Matter. In Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering (Bergamo, Italy) (ESEC/FSE 2015). ACM, New York, NY,
USA, 381–392. https://doi.org/10.1145/2786805.2786820

[68] Roberto Paleari, Davide Marrone, Danilo Bruschi, and Mattia Monga. 2008. On
Race Vulnerabilities in Web Applications. In Proceedings of the 5th International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment
(Paris, France) (DIMVA ’08). Springer-Verlag, Berlin, Heidelberg, 126–142. https:
//doi.org/10.1007/978-3-540-70542-0_7

[69] Soyeon Park, Shan Lu, and Yuanyuan Zhou. 2009. CTrigger: Exposing Atomicity
Violation Bugs from Their Hiding Places. In Proceedings of the 14th International
Conference on Architectural Support for Programming Languages and Operating
Systems (Washington, DC, USA) (ASPLOS XIV). ACM, New York, NY, USA, 25–36.

https://doi.org/10.1145/1508244.1508249
[70] Boris Petrov, Martin Vechev, Manu Sridharan, and Julian Dolby. 2012. Race Detec-

tion for Web Applications. In Proceedings of the 33rd ACM SIGPLAN Conference
on Programming Language Design and Implementation (Beijing, China) (PLDI ’12).
ACM, New York, NY, USA, 251–262. https://doi.org/10.1145/2254064.2254095

[71] Zhengyi Qiu, Shudi Shao, Qi Zhao, and Guoliang Jin. 2021. A Characteristic Study
of Deadlocks in Database-Backed Web Applications. In 2021 IEEE 32nd Interna-
tional Symposium on Software Reliability Engineering (ISSRE). IEEE Computer
Society, Wuhan, China, 510–521. https://doi.org/10.1109/ISSRE52982.2021.00059

[72] Zhengyi Qiu, Shudi Shao, Qi Zhao, and Guoliang Jin. 2021. Understanding
and Detecting Server-Side Request Races in Web Applications. In Proceedings
of the 29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE) (Athens,
Greece) (ESEC/FSE 2021). Association for Computing Machinery, New York, NY,
USA, 842–854. https://doi.org/10.1145/3468264.3468594

[73] Veselin Raychev, Martin Vechev, and Manu Sridharan. 2013. Effective Race
Detection for Event-driven Programs. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages
& Applications (Indianapolis, Indiana, USA) (OOPSLA ’13). ACM, New York,
NY, USA, 151–166. https://doi.org/10.1145/2509136.2509538

[74] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas
Anderson. 1997. Eraser: A Dynamic Data Race Detector for Multithreaded
Programs. ACM Trans. Comput. Syst. 15, 4 (Nov. 1997), 391–411. https://doi.org/
10.1145/265924.265927

[75] Koushik Sen. 2008. Race Directed Random Testing of Concurrent Programs. In
Proceedings of the 29th ACM SIGPLAN Conference on Programming Language
Design and Implementation (Tucson, AZ, USA) (PLDI ’08). ACM, New York, NY,
USA, 11–21. https://doi.org/10.1145/1375581.1375584

[76] Shudi Shao, Zhengyi Qiu, Xiao Yu, Wei Yang, Guoliang Jin, Tao Xie, and Xintao
Wu. 2020. Database-Access Performance Antipatterns in Database-Backed Web
Applications. In 2020 IEEE International Conference on Software Maintenance and
Evolution (ICSME). 58–69. https://doi.org/10.1109/ICSME46990.2020.00016

[77] Chao Wang, Mahmoud Said, and Aarti Gupta. 2011. Coverage Guided System-
atic Concurrency Testing. In Proceedings of the 33rd International Conference on
Software Engineering (Waikiki, Honolulu, HI, USA) (ICSE ’11). ACM, New York,
NY, USA, 221–230. https://doi.org/10.1145/1985793.1985824

[78] Jie Wang, Wensheng Dou, Yu Gao, Chushu Gao, Feng Qin, Kang Yin, and Jun Wei.
2017. A Comprehensive Study on Real World Concurrency Bugs in Node.Js. In
Proceedings of the 32nd IEEE/ACM International Conference on Automated Software
Engineering (Urbana-Champaign, IL, USA) (ASE 2017). IEEE Press, 520–531. https:
//doi.org/10.1109/ASE.2017.8115663

[79] Cong Yan, Alvin Cheung, Junwen Yang, and Shan Lu. 2017. Understanding
Database Performance Inefficiencies in Real-world Web Applications. In Pro-
ceedings of the 2017 ACM on Conference on Information and Knowledge Manage-
ment (Singapore, Singapore) (CIKM ’17). ACM, New York, NY, USA, 1299–1308.
https://doi.org/10.1145/3132847.3132954

[80] Junwen Yang, Pranav Subramaniam, Shan Lu, Cong Yan, and Alvin Cheung.
2018. How Not to Structure Your Database-Backed Web Applications: A Study
of Performance Bugs in the Wild. In Proceedings of the 40th International Confer-
ence on Software Engineering (Gothenburg, Sweden) (ICSE ’18). Association for
Computing Machinery, New York, NY, USA, 800–810. https://doi.org/10.1145/
3180155.3180194

[81] Tingting Yu, Witawas Srisa-an, and Gregg Rothermel. 2014. SimRT: An Auto-
mated Framework to Support Regression Testing for Data Races. In Proceedings of
the 36th International Conference on Software Engineering (Hyderabad, India) (ICSE
2014). ACM, New York, NY, USA, 48–59. https://doi.org/10.1145/2568225.2568294

[82] Lu Zhang and Chao Wang. 2017. RClassify: Classifying Race Conditions in Web
Applications via Deterministic Replay. In Proceedings of the 39th International
Conference on Software Engineering (Buenos Aires, Argentina) (ICSE ’17). IEEE
Press, Piscataway, NJ, USA, 278–288. https://doi.org/10.1109/ICSE.2017.33

[83] Wei Zhang, Junghee Lim, Ramya Olichandran, Joel Scherpelz, Guoliang Jin, Shan
Lu, and Thomas Reps. 2011. ConSeq: Detecting Concurrency Bugs Through
Sequential Errors. In Proceedings of the Sixteenth International Conference on
Architectural Support for Programming Languages and Operating Systems (New-
port Beach, California, USA) (ASPLOS XVI). ACM, New York, NY, USA, 251–264.
https://doi.org/10.1145/1950365.1950395

[84] Wei Zhang, Chong Sun, and Shan Lu. 2010. ConMem: Detecting Severe Concur-
rency Bugs Through an Effect-oriented Approach. In Proceedings of the Fifteenth
International Conference on Architectural Support for Programming Languages and
Operating Systems (Pittsburgh, Pennsylvania, USA) (ASPLOS XV). ACM, New
York, NY, USA, 179–192. https://doi.org/10.1145/1736020.1736041

[85] Yunhui Zheng and Xiangyu Zhang. 2012. Static Detection of Resource Contention
Problems in Server-side Scripts. In Proceedings of the 34th International Conference
on Software Engineering (Zurich, Switzerland) (ICSE ’12). IEEE Press, Piscataway,
NJ, USA, 584–594. http://dl.acm.org/citation.cfm?id=2337223.2337292

756

