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Abstract—Deadlocks in database-backed web applications
could involve different numbers of HTTP requests, and they
could be caused by locks explicitly requested in application code
or implicitly requested by databases during query execution.
To help developers understand these deadlocks and guide the
design of tools for combating these deadlocks, we conduct a
characteristic study with 49 deadlocks collected from real-world
web applications developed following different programming
paradigms. We provide categorization results based on HTTP
request numbers and resource types, with a special focus on cat-
egorizing deadlocks on database locks. We expect our results to be
useful for application developers to understand web-application
deadlocks and for tool researchers to design comprehensive
support for combating web-application deadlocks.

I. INTRODUCTION

Web applications are now an important platform for compa-

nies to deliver content and services to customers. By the nature

of web applications, they are concurrent and thus subject

to deadlocks. With the development of cloud platforms for

hosting web applications, they become more and more popular.

Coupled with the wide availability of hand-held devices,

deadlocks become a more critical problem as deadlocks could

happen more often with an increasing user base.

In web applications, the core business logic is a group of

request handlers, which are responsible for handling incom-

ing HTTP requests. Depending on the number of requests

involved, deadlocks can be categorized as inter-request dead-
locks where the deadlocks happen between request handlers

for two or more requests, intra-request deadlocks where the

deadlocks happen within a request handler while handling one

request, and non-request deadlocks where the deadlocks hap-

pen without involving request handling but in other execution

phases of the web applications, e.g., when the applications

start, shutdown, restart, or perform background tasks.

Web-application deadlocks could involve different types

of resources. As web applications are commonly backed

by databases on the server-side, database locks could be

one important type of resources involved in web-application

deadlocks. Language-level synchronization objects can also

be involved, depending on the support for concurrency and

synchronization provided by different web-application de-

velopment languages. For example, Java has more mature

support for multithreading compared with PHP and Python.

Lastly, as different paradigms and frameworks for developing

web applications, e.g., Object Relational Mapping (ORM)
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and event-driven Node.js, are being proposed and adopted,

synchronization objects in these frameworks and libraries can

also be involved. Among these lock types, database locks

are unique in that SQL queries could lead to implicit lock

acquisition due to database internals.
Most existing work on deadlocks focus on multi-threaded

programs, including characteristic studies [41], [51] and vari-

ous techniques for detection [14], [15], [24], [25], [31], [32],

[36], [39], [40], [45], [46], [49], [56], [60], [69], avoid-

ance [36], [65], [66], prevention [47], [69], testing [59], and

fixing [30], [50]. Since these general techniques focus on

modeling language-level locks, they will not be able to handle

deadlocks on database locks that are not explicitly requested

in application code. For web-application deadlocks not related

to concurrent request handlers or database locks, it is also not

clear how helpful existing techniques are.
Specific to web-application deadlocks, existing techniques

all focus on database-lock deadlocks, and detect-and-recover is

the most well-known approach. Specifically, major databases,

e.g., MySQL, PostgreSQL, and SQL Server, provide deadlock

detection capability [10], [13], [19]. Upon a detected deadlock,

a victim will be chosen, and the web application could retry

the victim transaction. Databases also provide error logs with

which application developers can diagnose the deadlocks and

fix the root cause of these deadlocks if they choose to.
However, deadlocks on database locks are difficult to under-

stand even with database logs. For example, someone posted

the following question on StackOverflow upon seeing error

logs about a deadlock from MySQL/InnoDB [23].

“Why MySQL starts deadlocking when this simple

command of scheduling a job is executed concurrently?

If it is really true that InnoDB is expected to create

deadlocks even in normal circumstances, then how is

MySQL expected to be used in any production database

which is expected to have more concurrent users? Am

I missing something?”

Since the aforementioned StackOverflow question has no

accepted answer yet, we use a deadlock example from the

MySQL manual [1] shown in Listing 1 to illustrate the

challenges of deadlock understanding. In Listing 1, three

transactions try to insert the same value on the primary key in

sequence, and then the first transaction rolls back, after which,

the second and third transactions will be in a deadlock.
To fully understand how this sequence of queries leads to

the deadlock, one needs to know the locking strategy followed

by the underlying database storage engine and different locks



CREATE TABLE t1 (i INT, PRIMARY KEY (i)) ENGINE = InnoDB;

START TRANSACTION; /* TX1 */
INSERT INTO t1 VALUES(1);

START TRANSACTION; /* TX2 */
INSERT INTO t1 VALUES(1);

START TRANSACTION; /* TX3 */
INSERT INTO t1 VALUES(1);

ROLLBACK;

Listing 1. An example from MySQL’s official manual

requested by different queries being executed. Note that some-

times multiple locks could be requested during different phases

of executing one query. While some manuals for the locking

strategy used by database storage engines are usually provided

by vendors, they do not seem to be enough to help applica-

tion developers quickly understand web-application deadlocks

on database locks, as exemplified by the aforementioned

StackOverflow question. Facing these challenges, application

developers could benefit from a characteristic study of real-

world deadlocks on database locks, with which they can learn

common patterns and acquire the necessary knowledge on

database locking useful for deadlock understanding.

Beyond the detect-and-recover approach with support pri-

marily from the database community, the software-engineering

community has also contributed to the testing of deadlocks in

database-backed applications [44] and prevention of deadlocks

on database locks [43]. However, existing techniques only

model the locking behavior in database queries very conser-

vatively, and the example in Listing 1 is beyond the capability

of these techniques. It is unclear how well existing techniques

can cover real-world deadlocks on database locks.

To complement the current state of the art, in this work, we

conduct a characteristic study of real-world deadlocks from

database-backed web applications. We start our study with the

following research question:

• RQ1: What are the common types of deadlocks in web

applications regarding the number of HTTP requests and

deadlock resources, and how these characteristics are

impacted by application differences?

To answer RQ1, we do keyword search in the bug-tracking

systems of 106 database-backed web applications, covering

applications developed with major paradigms and languages,

and find 49 real-world deadlocks in web applications. We

characterize these 49 deadlocks based on the number of HTTP

requests and deadlock resources involved in them. Our results

suggest that inter-request deadlocks on database locks are

not only the most common but also the most challenging

type of deadlocks in web applications, which is worth further

investigation. As our keyword search only returns deadlocks

in a subset of web applications, we also study the relationship

between application characteristics and the number of dead-

locks, and our results suggest that both development paradigm

and project history could affect the number of deadlocks.

We proceed with the following two research questions to

further study web-application deadlocks on database locks:

• RQ2: What are the common types of web-application

deadlocks on database locks?

• RQ3: What are the common fixing strategies of web-

application deadlocks on database locks?

To answer RQ2 and RQ3, we use the 36 deadlocks on

database locks that we collect while answering RQ1, and we

further complement the bug set with 27 deadlocks based on

StackOverflow questions. We characterize these 63 deadlocks

into four different hold-and-wait cycles, depending on the

complexity of resources involved. To make our study results

useful for developers to understand database-lock deadlocks

they may encounter, we further divide three out of the four

types of cycles into 12 patterns and provide an example for

each pattern. For each example, we describe the queries and

the locks requested by these queries in detail. Among all

the different categories of database-lock deadlocks, existing

work [43], [44] may only be able to handle one pattern that

is the most straightforward. Compared with the patterns, we

find fixing strategies more straightforward to understand, and

we also summarize our findings.

Overall, we expect our results can (1) ease the task of

deadlock understanding for application developers and (2)

guide tool researchers and developers to design and implement

comprehensive tool support for deadlocks in web applications.

II. METHODOLOGY

In this section, we first describe our methodology on how we

collect and analyze bug reports related to deadlocks from real-

world web applications developed using different program-

ming paradigms and frameworks, and we then describe our

methodology on how we collect and analyze StackOverflow

posts related to deadlocks on database locks. To answer RQ1,

we use deadlock reports from real-world web applications.

To answer RQ2 and RQ3, we use real-world web-application

deadlocks on database locks labeled after answering RQ1
together with StackOverflow questions.

Our study includes three types of web applications, (1) clas-

sical ones that access databases by constructing SQL queries

directly, (2) those implemented on top of ORM frameworks,

and (3) those implemented on top of the Node.js framework.

For classical web applications, we start with the application

list from the study of performance antipatterns in classical web

applications [62]. For ORM web applications, we start with the

application list from the study of concurrency control in ORM

web applications [29]. For Node.js applications, we start with

the application list from the concurrency-bug study for Node.js

applications [64] but exclude those that are just libraries but

not complete applications. We also include other open-source

web applications that we are aware of and those we run into

during our study, e.g., some StackOverflow questions mention

the names of web applications we originally do not include.

To this end, our application set includes 11 classical, 77 ORM,

and 18 Node.js web applications.

We follow the methodology taken by existing studies on

concurrency bugs in multi-threaded applications [51], perfor-

mance bugs in web applications [62], [67], [68], and non-

deadlock concurrency bugs in web applications [37], [57], [64]

while collecting and studying bug reports related to deadlocks.



Table I. Web applications and numbers of bugs being studied and their overall characteristics

Server-Side Non-Request Intra-Request Inter-Request

Programming Application Development Thread Sync. Database Thread Database Thread Database Cache
Paradigm (Abbreviation) Language (Lock Only) Lock Lock Lock Lock Lock Lock

Classical

MediaWiki (MW) PHP - - - 2 - 16 1
Odoo (OD) Python - - - 4 - - -
Drupal (DPL) PHP - - - - - 3 -
Sonar (SNR) Java 1 (1) - - - - 2 -
BugZilla (BZ) Perl - - - - - 1 -
OpenMRS (MRS) Java 3 (2) - - - - 1 -
Gerrit (GRT) Java 3 (2) - - - 2 - -

ORM

Gitlab (GL) Ruby on Rails - - - - - 1 -
Discourse (DC) Ruby on Rails - - - - - 1 -
Spree (SPR) Ruby on Rails - - - - - 1 -
Openstreetmap (OSM) Ruby on Rails - - - - - 1 -
Lobsters (LOB) Ruby on Rails - - - - - 1 -
AWX (AWX) Django / Python - - 1 - - - -
Sentry (SEN) Django / Python - - 2 - - - -

Node.js Ghost (GHO) Javascript - 1 - - - 1 -

To collect bugs related to deadlocks, we first search for

closed bug reports in each application’s issue-tracking system

with the keyword “deadlock(s).” We do not include other key-

words in our search because we would like to study bugs that

are determined by application developers as deadlocks, under

which case we believe the well-known word “deadlock(s)” will

appear in the bug report. After keyword search, we obtain a

total of 546 bug reports, i.e., 384 reports from 10 classical web

applications, 148 reports from 22 ORM web applications, and

14 reports from 7 Node.js web applications.

With this initial set of bug reports, we filter out ones

that only mention the word “deadlock(s)” but are actually

not deadlocks. For example, sometimes application developers

may call a hang bug due to infinite loops as deadlock. We also

filter out bug reports that do not contain sufficient information

for us to understand. A bug report typically contains some

bug description, followed by some discussion and comments

on possible causes and fixes, some intermediate fixes, and the

final committed fix. Every bug report is manually inspected

and discussed by at least two authors to ensure the objectivity

of our conclusions. We determine the root cause of each bug

by examining each bug report to understand what particular

reasons in program code, schemas, or database behaviors cause

the deadlock bugs, and we determine the fix strategy of each

bug by inspecting its accepted patch for changes in program

code, queries, or schema and reviewing the patch submitter’s

description of the fix.

Following this process, our final set has 49 closed re-

ports with sufficient information for us to determine that

their root causes are deadlocks. In comparison, the study of

concurrency bugs in multi-threaded applications includes 31

deadlocks [51]. Table I shows the names and the numbers

of deadlocks for each application. Note that the previous

concurrency-bug study on Node.js applications and libraries

states that they found no deadlock [64]. For the two Node.js

deadlocks we find, one of them is reported after the study is

published. The other is reported before the study is published,

but the deadlock happens during the application start phase

after a database upgrade, which could be the reason why it

was not included by the authors of the previous study [64].

To further complement our understanding of deadlock pat-

terns, we also search questions on StackOverflow for analysis.

Table II. Accumulated numbers of deadlocks involving different numbers of
requests and different types of resources

Thread Sync Database Cache
(Lock Only) Lock Lock Total

Non-Request 7 (5) 1 0 8

Intra-Request 3 (3) 6 0 9

Inter-Request 2 (2) 29 1 32

Total 12 36 1 49

We use 35 different combinations of tags and keywords, e.g.,

“deadlock,” “database,” “MySQL,” and “web application,”

for question search. For searches returning more than 50

questions, we include the first 50 with the highest votes.

Otherwise, all returned questions are included. To this end, we

obtain an initial set of 81 unique questions. We then manually

filter out questions without sufficient information for us to

understand, e.g., questions with no answer or no discussion.

Following this process, we finally obtain a set of 27 questions.

For each bug report and StackOverflow question, two au-

thors first independently examine all available information, in-

cluding description, discussion, database log, source code, and

fixes to make their own conclusion. Then, the two inspectors

cross-check with each other with more authors involved in the

discussion to reach a final conclusion.

III. RQ1: OVERALL DEADLOCK CHARACTERISTICS

In this section, we first discuss the overall characteristics of

the deadlocks we collect, and we then discuss how application

differences affect these characteristics.

A. Overall Characteristics of Collected Deadlocks

We first categorize web-application deadlocks based on the

number of HTTP requests and the types of resources involved

in deadlocks. On request numbers, we categorize them into

non-request, intra-request, and inter-request deadlocks, which

need zero, one, and more than one HTTP request, respectively.

On resource types, we differentiate database locks, thread

synchronization that includes locks and condition variables,

and other locks explicit in application code, e.g., cache locks.

Table I shows the numbers of deadlocks involving different

numbers of requests and different types of resources for each

application, and Table II shows the accumulated numbers.



Table III. Patterns of database-lock deadlocks and their numbers

Pattern
Nested
TXes

Simple Cycles Cycles with a Lock Held by Multi TXes Cycles with Lock Queues
Total

Pattern-1 Pattern-2 Pattern-3 Pattern-4 Pattern-5 Pattern-6 Pattern-7 Pattern-8 Pattern-9 Pattern-10 Pattern-11 Pattern-12

# in App 4 6 0 0 2 4 7 2 2 3 0 3 3 36

# in SO 0 2 6 1 5 1 8 0 2 0 1 0 1 27

Among the 8 non-request deadlocks, 7 of them are on thread

locks in applications developed with Java. These deadlocks ei-

ther happen during the starting, shutdown, or restarting phase,

or they are triggered while performing offline or background

tasks. In these scenarios, deadlocks happen due to concurrency

internal to the language but not due to external HTTP requests

that arrive concurrently. Thus, it is not surprising that these 7

deadlocks are in applications developed with Java. 5 of them

only involve locks. Among them, 4 are fixed by removing

unnecessary locks, and the remaining 1 is fixed by changing

application logic to make the two deadlock parties not con-

current; The other 2 involve condition variables, and they are

fixed by adding the missing signal or removing the untimely

wait. Overall, they are similar to classical thread deadlocks in

Java. The remaining non-request deadlock is in a Node.js web

application. The deadlock happens when the web application

starts after a database upgrade, and it involves concurrent

UPDATE queries. To fix this deadlock, programmers choose

to issue these queries sequentially.

Among the 9 intra-request deadlocks, 3 of them are on

thread locks in applications developed with Django, which

is a Python-based web framework with ORM support. These

deadlocks are all due to recursive lock operations on the

same lock, and they are fixed by either using a reentrant

lock instead of a normal lock or removing unnecessary calls

that try to acquire the same lock. In the remaining 6 intra-

request deadlocks on database locks, 4 happen in Odoo, which

uses PostgreSQL as its backend database, and 2 happen in

MediaWiki, which involves asynchronous execution, and we

will discuss their deadlock patterns in Section IV.

Among the 32 inter-request deadlocks, 3 of them are not

on database locks, where 2 are on thread locks and 1 is on a

cache lock. They happen all due to missing unlock calls while

handling one HTTP request, and they are fixed by adding the

missing unlock calls. The remaining 29 are all on database

locks, and we will detail them in Section IV.

From the discussion above, we can see that existing tech-

niques can handle the studied deadlocks on thread synchro-

nization or cache lock, regardless of the request number.

From the accumulated numbers in Table II, we can see that

inter-request deadlocks are more common than non-request

and intra-request deadlocks, which is likely due to the nature

of web applications that their core logic is handling concurrent

requests. We can also see that deadlocks on database locks

are more common, which is likely due to the deep coupling

between web applications and databases. To this end, inter-

request deadlocks on database locks are the most common, and

they are also the most challenging for existing techniques to

handle due to two challenges, i.e., they require new techniques

to (1) analyze the relationship between different requests and

(2) model database locking behavior. To handle non-request

and intra-request deadlocks on database locks, while they

would not exhibit the first challenge, we still need to handle

the second challenge.

For the relationship between request numbers and deadlock

resources, we can see that both thread locks and database

locks could be involved in non-request, intra-request, and

inter-request deadlocks. Therefore, they are two orthogonal

dimensions for web-application deadlocks.

B. Application Differences vs. Deadlock Characteristics

For the relationship between deadlock resources and devel-

opment languages, deadlocks on thread synchronization are

more common in web applications developed with languages

that provide mature support for concurrency and synchro-

nization, i.e., Java in our case, but deadlocks on threaded

synchronization can also happen in applications developed

with other languages, as more languages have now gradually

added support for concurrency and synchronization.

For the relationship between development paradigms and

numbers of deadlocks, we can see classical applications have

more deadlocks compared with web applications based on

ORM frameworks or Node.js. Note that we also searched

many applications with results of zero deadlocks, as described

in Section II. This result could be due to two reasons. First,

classical web applications generally have a longer development

history. Secondly, ORM web-application developers reportedly

prefer not to use transactions in their code [29], which is a

necessary condition for database-lock deadlocks to happen.

IV. RQ2: PATTERNS OF DATABASE-LOCK DEADLOCKS

Following the process discussed in Section II, we identify

36 deadlock bugs on database locks from real-world web

applications and 27 such deadlocks from StackOverflow ques-

tions. As database-lock deadlocks happen between concurrent

transactions, but the source of concurrency does not affect the

patterns for database-lock deadlocks much, we include all non-

request, intra-request, and inter-request cases in this section.

From these cases, we summarize four patterns of deadlocks

on database locks that differ on the types of resources involved

in deadlock hold-and-wait cycles, and Table III shows the

overall results. Specifically, in the order of increasing com-

plexity, the four cycle patterns are: (1) Nested Transactions,

where a program creates two database connections in one

thread, starts a transaction in each connection, and requests

two conflicting locks, and this is similar to deadlocks caused

by nested lock acquisition in multi-threaded programs; (2)

Simple Cycles that involve locks on two rows; (3) Cycles with
a Lock Held by Multiple Transactions, which involve locks

that can be held by multiple transactions simultaneously, and



they require extra modeling efforts; and (4) Cycles with Lock
Queues that further involve lock queues, which is due to how

locks are implemented internally in databases.

In this section, we first provide necessary background con-

cepts on database locking, and we then detail the four deadlock

cycle patterns with more subpatterns and concrete examples.

As our goal is to help application developers understand

database-lock deadlocks that they may encounter in the future,

our subpatterns and examples are very detailed. We do not try

to exhaustively enumerate all possible patterns that may occur

in theory, but we categorize and show real-world cases that

we see in web applications and StackOverflow questions.

A. Background on Locking Strategy

All database-lock deadlocks that we study are either on

MySQL/InnoDB or PostgreSQL. Both MySQL/InnoDB and

PostgreSQL use multiversion concurrency control (MVCC)

and provide four isolation levels following SQL standard, i.e.,

Read Uncommitted, Read Committed, Repeatable Read, and

Serializable, but their locking strategies are different. In the

deadlocks that we study, 32 application and 22 StackOverflow

deadlocks are on MySQL/InnoDB, and 4 application and 5

StackOverflow deadlocks are on PostgreSQL.

To understand the deadlocks on PostgreSQL locks, only

general knowledge of standard SQL is needed, e.g., the

concepts of clustered index, secondary index, primary key,

and non-primary index. Such knowledge is assumed in this

section. Next, we describe concepts that are fundamental for

understanding deadlocks on MySQL/InnoDB locks. Due to

space limitations, we are not trying to be comprehensive in this

subsection, but we focus on two concepts, i.e., lock modes and

lock types. Later in this section, we will describe the mode and

type of locks being requested by each query in our examples.

In MySQL/InnoDB, locks can be in two modes: (1) a

shared (S) lock permits the transaction that holds the lock

to read some rows, and (2) an exclusive (X) lock permits the

transaction to modify some rows. Locks can be in one of four

types: (1) Record Lock, which is a lock on an index record, (2)

Gap Lock, which is a lock on a gap between index records, or

a lock on the gap before the first or after the last index record,

(3) Next-Key Lock, which is a combination of a record lock on

the index record and a gap lock on the gap before the index

record, and (4) Insert-Intention Lock, which is a type of gap

lock set by INSERT operations prior to row insertion.

Under MVCC, locks are requested automatically for SQL

queries based on the isolation level, and queries could be

blocked if the requested locks conflict with locks granted to

other transactions. Unless otherwise specified, the isolation

level in our studied bugs is repeatable read. All locks are

released when a transaction is committed or aborted. Transac-

tions can be started and committed explicitly, or a query that

is not in any transaction is a transaction by itself.

B. Cycles with Nested Transactions

The 4 intra-request deadlocks in PostgreSQL-backed Odoo
are due to nested transactions in one execution thread, where

CREATE TABLE live_measures(
UUID VARCHAR(40) NOT NULL, ...

);
ALTER TABLE live_measures ADD CONSTRAINT PK_LIVE_MEASURES

PRIMARY KEY(UUID);

START TRANSACTION; /* TX1 */
UPDATE live_measures SET ... WHERE UUID=2;

START TRANSACTION; /* TX2 */
DELETE FROM live_measures WHERE UUID=1;

UPDATE live_measures SET ... WHERE UUID=1;
DELETE FROM live_measures WHERE UUID=2;

Listing 2. Sonar #11097

one request handler first makes a database connection, starts

one transaction, and requests one lock, and it then makes a

new database connection within the same execution thread,

starts a new transaction, and requests a conflicting lock.

C. Simple Cycles

Fig. 1. A simple cycle

Figure 1 shows the simple deadlock

cycle with locks on two records R1 and

R2. In the diagram, transaction TX1

holds lock L1a and waits for lock L2b,

and transaction TX2 holds lock L2a

and waits for lock L1b. Further, locks

L1a and L1b are conflicting, and locks

L2a and L2b are conflicting. Note that L1a and L1b can be

one lock, and L2a and L2b can also be one lock. Depending

on how many SQL queries are involved, we further divide

deadlocks with simple cycles on database locks into three

categories with four, three, and two queries, respectively.

[Pattern-1] Simple Cycles with Four Queries

Description: Pattern-1 deadlocks involve four queries from

two transactions, with two queries from each transaction, and

these queries access the database with primary-key values or

unique-index values specified.

Example: Listing 2 shows the deadlock in Sonar #11097 [5].

The four queries involved in the deadlock either UPDATE or

DELETE one row with values of the primary key specified.

Thus, they all acquire a record lock for its corresponding row

in the exclusive mode, but the two transactions acquire the

two locks in the opposite order, resulting in a deadlock.

[Pattern-2] Simple Cycles with Three Queries

Description: Pattern-2 deadlocks involve three queries from

two transactions, with two queries in one transaction and one

query in the other transaction. The one query could request

multiple locks due to several different reasons: full table scan

during query execution, multiple tables being involved, or

multiple indexes being involved.

Examples: Listings 3 and 4 show two examples where one

query leads to a full table scan and locks multiple primary-

key records, and they are based on StackOverflow questions

#40653848 [16] and #1851528 [20], respectively. In Listing 3,

the SELECT subquery of INSERT in TX2 will perform a full

table scan and acquire a shared record lock on each primary-

key record that satisfies the WHERE condition. Although there is

an index on type, the database engine still decides to perform



CREATE TABLE problem_table(
id INT(11) NOT NULL,
type enum('TYPE1','TYPE2','TYPE3') NOT NULL,
source VARCHAR(16) DEFAULT NULL,
PRIMARY KEY (id),
KEY type_idx (type), ...

);

START TRANSACTION; /* TX1 */
UPDATE problem_table SET ... WHERE id=2;

START TRANSACTION; /* TX2 */
INSERT INTO temp SELECT ... FROM

problem_table p WHERE p.type IN
('TYPE1', 'TYPE2') AND p.source='FOO';

UPDATE problem_table SET ... WHERE id=1;

Listing 3. StackOverflow #40653848

CREATE TABLE jobs(
jid INT(11) NOT NULL,
status VARCHAR NOT NULL, ...
PRIMARY KEY (jid)

);

START TRANSACTION; /* TX1 */
UPDATE jobs SET ... WHERE jid=2;

START TRANSACTION; /* TX2 */
SELECT ... FROM jobs WHERE status='new' FOR

UPDATE;
UPDATE jobs SET ... WHERE jid=1;

Listing 4. StackOverflow #1851528

START TRANSACTION; /* TX1 */
INSERT INTO phppos_sales VALUES (...);

START TRANSACTION; /* TX2 */
CREATE temporary TABLE temp SELECT ... FROM

phppos_sales_items INNER JOIN
phppos_sales ON ... INNER JOIN ...
WHERE ...;

INSERT INTO phppos_sales_items VALUES (...);

Listing 5. StackOverflow #23768456

a full table scan. In Listing 4, the SELECT FOR UPDATE query

in TX2 will perform a full table scan as well and acquire an

exclusive record lock on each primary-key record that satisfies

the WHERE condition. The database engine performs a full

table scan in this case, as the field in the WHERE condition is

not indexed. In both cases, the two queries from TX1 request

exclusive record locks on two rows but in an order opposite

with the order that the query from TX2 locks the same two

rows during the full table scan.

Listing 5 shows an example based on StackOverflow ques-

tion #23768456 [18], and it is one example where one query

locks rows from two different tables due to joined tables.

In TX2, the SELECT subquery of CREATE is performed on a

table joined from two existing tables. For each row match-

ing the WHERE condition, the corresponding row in table

phppos_sales_items will be locked first, and then the

corresponding row in table phppos_sales will be locked.

On the other hand, the two queries in TX1 request exclusive

record locks on the two rows of these two tables in a different

order, resulting in a deadlock.

Listing 6 shows an example based on StackOverflow ques-

tion #2560070 [21], where one query locks rows from two

tables due to foreign keys. In TX1, the SELECT FOR UPDATE

query requests an exclusive lock on the row with id=1000 in

table A. Then, the INSERT query in TX2 first gets an exclusive

record lock on the row with id=1 just being inserted in table

create table A (id INT(11) PRIMARY KEY);
create table B (

id INT(11) PRIMARY KEY,
aid INT(11), ...
FOREIGN KEY (aid) REFERENCES A(id)

);

START TRANSACTION; /* TX1 */
SELECT * FROM A WHERE id=1000 FOR UPDATE;

START TRANSACTION; /* TX2 */
INSERT INTO B (id, aid, ...)

VALUES (1, 1000, ...);
INSERT INTO B (id, aid, ...)

VALUES (1, 1000, ...);

Listing 6. StackOverflow #2560070

CREATE TABLE tab1 (
id INT(11) NOT NULL AUTO_INCREMENT,
sn VARCHAR(20) NOT NULL,
is_fetch TINYINT(1) NOT NULL DEFAULT '0' , ...
PRIMARY KEY (id),
KEY sn (sn),
KEY is_fetch (is_fetch),

);

START TRANSACTION; /* TX1 */
SELECT sn FROM tab1 WHERE is_fetch=0

LIMIT 200 FOR UPDATE;
START TRANSACTION; /* TX2 */
INSERT IGNORE INTO tab1 (sn, is_fetch, ...)

VALUES ('4287', 0, ...);
UPDATE tab1 SET is_fetch=1

WHERE sn in ('4287', ...);

Listing 7. StackOverflow #24327317

B, and it will then request a shared record lock on the row

with id=1000 in table A, as the primary key of table A is

a foreign key in table B. However, this request from TX2 is

blocked due to the lock on that row held by TX1. Finally, the

INSERT query in TX1 will also try to insert into table B, but it

gets blocked during duplicate-key checking by TX2, as a row

satisfying id=1 has been inserted into table B by TX2 already.

Listing 7 shows an example based on StackOverflow ques-

tion #24327317 [3], where one query locks rows in two

indexes. In TX1, the SELECT FOR UPDATE query acquires an

exclusive next-key lock on every record in index is_fetch

satisfying is_fetch=0 and a gap lock on the range after the

last record satisfying is_fetch=0. These ranges are locked

to prevent other transactions from inserting records satisfying

is_fetch=0 in the is_fetch index concurrently. Then, the

INSERT query in TX2 inserts a row whose is_fetch field

equals 0. It successfully inserts the record to the primary index

and acquires an exclusive lock on the newly inserted primary-

index record, but it gets blocked while requesting an exclusive

insert-intention lock on secondary index is_fetch, as it falls

into the range after last is_fetch=0 record, which has been

locked by TX1. Finally, the database engine chooses to perform

a full table scan based on existing data in the table while

executing the UPDATE query in TX1. During this process, it

tries to acquire an exclusive next-key lock on every primary-

key record, including the newly inserted row, and thus gets

blocked as the new row is inserted by TX2.

[Pattern-3] Simple Cycles with Two Queries

Description: Pattern-3 deadlocks involve two queries from

two transactions, and each query requests multiple locks.



CREATE TABLE fruit_setting (
id BIGINT(20) NOT NULL AUTO_INCREMENT,
aid VARCHAR(32) NOT NULL,
eid VARCHAR(32) NOT NULL,
mykey VARCHAR(32) NOT NULL, ...
PRIMARY KEY (id),
KEY i_aid_mykey (aid, mykey),
UNIQUE KEY i_eid_mykey (eid, mykey), ...

);
INSERT INTO fruit_setting (id, aid, eid, mykey, ...)

VALUES (1, 'a', 'b', 'a', ...);
INSERT INTO fruit_setting (id, aid, eid, mykey, ...)

VALUES (2, 'a', 'a', 'a', ...);

START TRANSACTION; /* TX1 */
UPDATE fruit_setting SET ... WHERE

aid='a' and mykey='a';
START TRANSACTION; /* TX2 */
UPDATE fruit_setting SET ... WHERE

eid IN ('a', 'b') and mykey='a';

Listing 8. StackOverflow #65519414

Example: Listing 8 shows an example based on StackOver-

flow question #65519414 [2]. The table schema contains 2

different indexes. One consists of columns eid and mykey,

and the other consists of aid and mykey. The UPDATE query

in TX1 updates the records via searching in the order of index

i_aid_mykey. Since the two existing rows have the same

values for aid and mykey, the two rows will be accessed in

an order based on the values of primary key id. Specifically,

the query will request an exclusive lock first on the row with

id=1 and then on the row with id=2. On the other hand, the

UPDATE query in TX2 updates the records via searching in the

order of index i_eid_mykey. With the two existing rows, it

will request exclusive locks on the two rows in an opposite

order as the query in TX1, resulting in a deadlock.

D. Cycles with a Lock Held by
Multiple Transactions

Fig. 2. A cycle with
a lock held by multiple
transactions

Deadlocks involving a lock held by

multiple transactions cannot be mod-

eled with the simple cycle already de-

scribed, and Figure 2 shows the dead-

lock cycle that we come up with to

model deadlocks involving such locks.

In the diagram, transactions TX1 and

TX2 both hold the same lock on record

R. Then, they both request the exclusive lock, which conflicts

with the lock held by the other transaction, and thus the

two transactions get blocked by each other, resulting in a

deadlock. Depending on the type of the lock held by multiple

transactions, we further divide them into three types. Below,

we omit the Description paragraph if the pattern name is self-

explanatory and we do not have more to add.

[Pattern-4] Multiple TXes Holding One Shared Record Lock

Description: The lock held by multiple transactions is a shared

record lock, and this is the classical conversion case [58].

Examples: Listing 9 shows an example based on StackOver-

flow question #5353877 [22]. First, the SELECT subqueries

of INSERT in both transactions acquire a shared record lock

on the row with id=10 in table trades. Then, the UPDATE

CREATE TABLE tradeshistory (
PRIMARY KEY (id), ...

);
CREATE TABLE trades (

PRIMARY KEY (id), ...
);

START TRANSACTION; /* TX1 */
INSERT INTO tradeshistory (SELECT

trades.* FROM trades WHERE id=10);
START TRANSACTION; /* TX2 */
INSERT INTO tradeshistory (SELECT

trades.* FROM trades WHERE id=10);
UPDATE trades SET ... WHERE id=10;

UPDATE trades SET ... WHERE id=10;

Listing 9. StackOverflow #5353877

CREATE TABLE votes ( ...,
story_id BIGINT(20) NOT NULL, ...,
FOREIGN KEY (story_id) REFERENCES stories(id);

);
CREATE TABLE stories (

id BIGINT(20) NOT NULL PRIMARY KEY, ...
)

START TRANSACTION; /* TX1 */
INSERT INTO votes (story_id, ...)

VALUES (1, ...);
START TRANSACTION; /* TX2 */
INSERT INTO votes (story_id, ...)

VALUES (1, ...);
UPDATE stories SET ... WHERE id=1;

UPDATE stories SET ... WHERE id=1;

Listing 10. Lobsters #39

queries in both transactions ask for an exclusive record lock

on the same row, but both get blocked by the shared record

lock held by the other transaction. Listing 10 shows a similar

example from Lobsters #39 [17]. The INSERT queries in both

transactions acquire a shared record lock on the row with id=1

in table stories, but this is due to foreign key, which is the

same as the case in Listing 6.

[Pattern-5] Multiple TXes Holding One Shared Gap Lock

Example: The example from MySQL’s official manual in

Listing 1 as mentioned in Section I is a Pattern-5 deadlock. In

TX1, the INSERT query acquires an exclusive record lock on

the row inserted. In TX2 and TX3, the INSERT query asks for

a shared record lock during duplicate-key checking because

the query inserts the primary key. When TX1 is rolled back,

the INSERT queries in TX2 and TX3 both get the shared gap

lock because the row inserted by TX1 does not exist anymore.

Then, the INSERT queries in both transactions ask for the

same exclusive insert-intention lock, but both get blocked by

the shared gap lock held by the other transaction.

[Pattern-6] Multiple TXes Holding One Exclusive Gap Lock

Description: The lock held by multiple transactions is an ex-

clusive gap lock. Although in the exclusive mode, an exclusive

gap lock can be held by multiple transactions simultaneously.

Example: Listing 11 shows MediaWiki #214035 [6]. With

existing data in table page_restrictions, the DELETE

queries in both transactions acquire an exclusive gap lock

on the same range, as the WHERE conditions in both queries

match no existing rows but fall into the same range. Then,



CREATE TABLE page_restrictions (
pr_id INT unsigned NOT NULL PRIMARY KEY AUTO_INCREMENT,
pr_page INT NOT NULL,
pr_type VARBINARY(60) NOT NULL, ...

)
CREATE UNIQUE INDEX pr_pagetype ON page_restrictions

(pr_page,pr_type);

START TRANSACTION; /* TX1 */
DELETE FROM page_restrictions WHERE

pr_page=125 and pr_type='move';
START TRANSACTION; /* TX2 */
DELETE FROM page_restrictions WHERE

pr_page=150 and pr_type='move';
INSERT INTO page_restrictions

(pr_page,pr_type,...) VALUES
(125,'move',...);

INSERT INTO page_restrictions
(pr_page,pr_type,...) VALUES
(150,'move',...);

Listing 11. MediaWiki #214035

CREATE TABLE cache_config(
cid VARCHAR(255) NOT NULL, ...
PRIMARY KEY (cid)

);

START TRANSACTION; /* TX1 */
DELETE FROM cache_config WHERE cid=1;

START TRANSACTION; /* TX2 */
DELETE FROM cache_config WHERE cid=1;

INSERT INTO cache_config (cid, ...)
VALUES(1, ...);

Listing 12. Drupal #2336627

the INSERT queries in both transactions ask for an exclusive

insert-intention lock on the same range, and they get blocked

by the exclusive gap lock held by the other transaction.

Besides DELETE, SELECT FOR UPDATE or UPDATE can

also have WHERE conditions matching no rows, thus acquiring

exclusive gap locks and causing the same type of deadlocks.

E. Cycles with Lock Queues

Fig. 3. A cycle with a
lock queue

Each MySQL/InnoDB record inter-

nally maintains a queue, and queries

requesting locks on the same record

are queued in the order these requests

are made. Therefore, queries enqueued

later need to wait for queries enqueued

earlier. Figure 3 shows the deadlock

cycle that we come up with to model

deadlocks involving such wait relationships on lock queues. In

the diagram, (1) TX1 acquires La, (2) TX2 requests Lb but gets

blocked by TX1, and TX2 is put into the queue corresponding

to record R, and (3) TX1 requests Lc that conflicts with Lb

being requested by TX2, and thus TX1 is blocked by TX2

and put into the same queue after TX1. Deadlocks involving

lock queues all have three queries, and we further divide such

deadlocks based on the query types and lock types involved

in the deadlock. We group the examples for Patterns 7, 8, and

9 together as they share the same query pattern. ‘X’ and ‘S’

in the following pattern names are lock modes.

[Pattern-7] DELETE-DELETE-INSERT Acquiring X Record
Lock, X Record Lock, and S Next-key Lock

CREATE TABLE user_properties (
up_user INT NOT NULL,
up_property VARBINARY(255) NOT NULL, ...

)
CREATE UNIQUE INDEX user_properties_user_property ON

user_properties (up_user,up_property);

START TRANSACTION; /* TX1 */
DELETE FROM user_properties WHERE

up_user=1 AND up_property='aaa';
START TRANSACTION; /* TX2 */
DELETE FROM user_properties WHERE

up_user=1 AND up_property='aaa';
INSERT INTO user_properties (up_user,

up_property, ...) VALUES(1, 'aaa', ...);

Listing 13. MediaWiki #38116

[Pattern-8] DELETE-DELETE-INSERT Acquiring X Record
Lock, X Next-Key Lock, and S Next-Key Lock
[Pattern-9] DELETE-DELETE-INSERT Acquiring X next-key
Lock, X Next-Key Lock, and X Insert-Intention Lock

Examples: Listing 12 shows a Pattern-7 deadlock in Drupal
#2336627 [8]. In TX1, the DELETE query first acquires an

exclusive record lock on the row of cid=1 because it uses the

primary key to search for records. In TX2, the DELETE query

asks for the same exclusive record lock on the same row but

gets blocked. Thus, TX2 is put into a wait queue corresponding

to the row of cid=1. Finally, the INSERT query in TX1 wants

to insert a record with cid=1. Because cid is the primary

key of the table, it asks for a shared next-key lock to check if

the primary key value to be inserted exists. This lock cannot

be granted because it conflicts with the lock requested by the

DELETE query in TX2. Thus, TX1 has to wait for TX2 that

is currently the head of lock queue for the row of cid=1,

completing the hold-and-wait cycle.

Listing 13 shows a Pattern-8 deadlock in MediaWiki
#38116 [9]. Among all locks that it acquires, the DELETE

query in TX1 acquires an exclusive record lock on the unique

index satisfying the WHERE condition, as it uses the unique

index to search for records. Then, the DELETE query in TX2

requests an exclusive next-key lock on the unique index, but

it gets blocked due to the aforementioned exclusive record

lock held by TX1. Based on comments from MySQL source

code, since in a unique secondary index, there may be different

delete-marked versions of a record where only the primary key

values differ, next-key locks are used on a secondary index

when locking delete-marked records. Finally, the INSERT

query asks for a shared next-key lock to check if the new row

with up_user=1 AND up_property='aaa' to be inserted

may result in duplicates on the unique index. This lock cannot

be granted because it conflicts with the lock requested by TX2.

Thus, TX1 again has to wait for TX2.

Listing 14 shows a Pattern-9 deadlock in MediaWiki
#30598 [7]. In this case, the two DELETE queries in both

transactions use non-unique indexes to search for records.

In TX1, the DELETE query acquires exclusive next-key locks

on the two indexes satisfying the WHERE condition because

the indexes are non-unique. Then, the DELETE query in TX2

requests the same locks and gets blocked by TX1, and it is put

into wait queues corresponding to these two indexes. Finally,



CREATE TABLE wb_terms (
term_row_id INT unsigned NOT NULL PRIMARY KEY

AUTO_INCREMENT,
term_entity_id INT unsigned NOT NULL,
term_entity_type VARBINARY(32) NOT NULL, ...

);
CREATE INDEX wb_terms_entity_id ON wb_terms

(term_entity_id);
CREATE INDEX wb_terms_entity_type ON wb_terms

(term_entity_type);

START TRANSACTION; /* TX1 */
DELETE FROM wb_terms WHERE term_entity_id=1

AND term_entity_type='A';
START TRANSACTION; /* TX2 */
DELETE FROM wb_terms WHERE term_entity_id=1

AND term_entity_type='A';
INSERT INTO wb_terms (term_entity_id,

term_entity_type, ...) VALUES (1, 'A'...);

Listing 14. MediaWiki #44547

CREATE TABLE parent (id INT(11) PRIMARY KEY);
CREATE TABLE child (

id INT(11) PRIMARY KEY,
parent_id INT(11),
FOREIGN KEY (parent_id) REFERENCES parent(id)

);

START TRANSACTION; /* TX1 */
INSERT INTO child (id, parent_id)

VALUES (10, 1);
START TRANSACTION; /* TX2 */
SELECT id FROM parent WHERE id=1

FOR UPDATE;
SELECT id FROM parent WHERE id=1

FOR UPDATE;

Listing 15. StackOverflow #41015813

the INSERT query in TX1 wants to insert a record sharing

the same values with the DELETE query on the non-unique

indexes. Since the indexes are not unique, the INSERT query

does not need to perform the duplicate key checking, but it will

directly request an exclusive insert-intention lock. This lock

cannot be granted because it conflicts with the lock requested

by TX2. Thus, TX1 has to wait for TX2.

[Pattern-10] INSERT-SELECT FOR UPDATE-SELECT FOR

UPDATE Acquiring S Record Lock, X Record Lock, and X
Record Lock

Example: Listing 15 shows an example based on StackOver-

flow question #41015813 [4]. The INSERT query in TX1

inserts a row of parent_id=1 into table child, and it

acquires a shared lock on the record satisfying id=1 in table

parent because of the foreign-key constraint between these

two tables. Then, TX2’s SELECT FOR UPDATE query will ask

for an exclusive lock on the record satisfying id=1 in table

parent. This lock request from TX2 is blocked by TX1.

After that, TX1’s SELECT FOR UPDATE query also asks for an

exclusive lock on the same record. This lock request from TX1

cannot be granted because it conflicts with the lock requested

by TX2, completing the deadlock cycle.

[Pattern-11] INSERT-INSERT-DELETE Acquiring X Record
Lock, S Record Lock, and X Next-Key Lock

Example: Listing 16 shows OpenMRS #674 [11]. In TX1, the

INSERT query inserts a new row in the table cache_config

CREATE TABLE cache_config(
idset_key CHAR(40) NOT NULL,
member_id INT(11) NOT NULL,
PRIMARY KEY (idset_key, member_id)

);

START TRANSACTION; /* TX1 */
INSERT INTO reporting_idset

(idset_key, member_id) VALUES (5, 5);
START TRANSACTION; /* TX2 */
INSERT INTO reporting_idset

(idset_key, member_id) VALUES (5, 5);
DELETE FROM reporting_idset

WHERE idset_key=5;

Listing 16. OpenMRS #674

CREATE TABLE wbc_entity_usage (
eu_row_id BIGINT NOT NULL PRIMARY KEY AUTO_INCREMENT,
eu_entity_id VARBINARY(255) NOT NULL,
eu_aspect VARBINARY(37) NOT NULL,
eu_page_id INT NOT NULL

);
CREATE UNIQUE INDEX eu_entity_id ON wbc_entity_usage (

eu_entity_id, eu_aspect, eu_page_id ); ...

START TRANSACTION; /* TX1 */
INSERT INTO wbc_entity_usage

(eu_page_id=10, eu_aspect='10', eu_entity_id='10');
START TRANSACTION; /* TX2 */
INSERT INTO wbc_entity_usage

(eu_page_id=10, eu_aspect='10',
eu_entity_id='10');

INSERT INTO wbc_entity_usage
(eu_page_id=9, eu_aspect='9', eu_entity_id='9');

Listing 17. MediaWiki #192349

and acquires an exclusive record lock on that row. Then, the

INSERT query in TX2 tries to insert the same record and

asks for a shared record lock on that row for duplicate-key

checking. It gets blocked by TX1 and is put into a wait queue.

After that, the DELETE query in TX1 tries to delete records

satisfying idset_key=5, including the newly inserted record

by the previous INSERT query in TX1. Since idset_key

is part of the multi-column primary key, it will ask for an

exclusive next-key lock on every record satisfying the where

condition. This lock cannot be granted as it conflicts with the

lock requested by TX2, completing the deadlock cycle.

[Pattern-12] INSERT-INSERT-INSERT Acquiring X Record
Lock, S Next-Key Lock, and X Insert-Intention Lock

Example: Listing 17 shows MediaWiki #192349 [12].

The first INSERT query in TX1 acquires an exclusive

record lock on both the row being inserted and the

unique index with eu_page_id=10, eu_aspect='10',

eu_entity_id='10'. The INSERT query in TX2 requests a

shared next-key lock on the unique index during duplicate-

key checking. TX2 gets blocked by TX1 and is put

into a wait queue. The second INSERT query in TX1

passes the duplicate-key checking, as eu_page_id=9,

eu_aspect='9', eu_entity_id='9' is not in the table,

and it proceeds to request an exclusive insert-intention lock.

When existing data in the table makes the insert-intention lock

be on the record of eu_page_id=10, eu_aspect='10',

eu_entity_id='10', the insert-intention lock requested by

TX1 conflicts with the lock requested by TX2. Thus, TX1 is

also blocked by TX2.



Table IV. Fixing strategies

Fixing Strategies Total

Fix

Enforcing lock order by changing query order 3
Omitting unnecessary queries 3
Omitting unnecessary SELECT FOR UPDATE locks 1
Removing unnecessary transactions 4
Avoiding concurrent execution with app-level lock 3
Avoiding concurrent execution with ordered execution 3
Avoiding conflicting by changing queries or logic 7
Avoiding nested transactions 3
Avoiding using database 1

Reduce
Splitting a large transaction into smaller ones 2
Reduce the number of resources requested 3

Catch and retry 3

F. Discussion

Among those PostgreSQL-lock deadlocks, the 4 from ap-

plications are due to cycles with nested transactions, and the

5 from StackOverflow questions are of Patterns 1, 2, and 4.

Deadlocks of these patterns can be understood with general

SQL knowledge, while deadlocks on MySQL/InnoDB locks

are more challenging for application developers to understand.

To help application developers in tackling this challenge,

we categorize deadlocks on MySQL/InnoDB locks in fine

granularity and provide a concrete example for each pattern

that we observe in our deadlock set. We believe the knowledge

gained through our examples will be valuable for application

developers to understand and diagnose deadlocks that they

may encounter, even for those beyond the patterns that we

observe. For tool researchers and developers, our results sug-

gest that existing tool support is not sufficient and call for

more effort in this area. Specifically, our results on database-

lock deadlocks reveal cycle patterns that existing techniques

on deadlocks have not accounted for.

V. RQ3: FIXES FOR DATABASE-LOCK DEADLOCKS

Unlike hold-and-wait cycle patterns, the fixing strategies

for database-lock deadlocks are much straightforward to un-

derstand. Table IV shows the different fixing strategies used

for the 36 deadlocks from real-world applications and their

corresponding numbers. On the high level, fixing strategies for

database-lock deadlocks can be categorized as (1) completely

eliminating the possibility of deadlocks, (2) reducing the

chance of deadlocks, or (3) adding catch-and-retry.

The majority, i.e., 28 out of 36, of the studied database-

lock deadlocks are completely fixed with various strategies.

The first three strategies can be viewed as different ways to

break the hold-and-wait cycle. The next three strategies can be

viewed as different ways to avoid concurrent transactions. The

last three strategies are more application-specific. In particular,

avoiding nested transactions is only used to fix Odoo intra-

request deadlocks, and the “avoiding using database” strategy

is used when the data can be moved to cache.

5 deadlocks are not completely fixed, but developers either

reduce transaction length or reduce the number of resources

requested in transactions to reduce the chance of deadlocks.

This could happen if a complete fix is too complex, and the

chance of deadlocks can be reduced to an acceptable level.

In the remaining 3 cases, developers take the catch-and-retry

approach by adding code to retry transactions on deadlocks,

and the chance of deadlocks is likely considered as acceptable.

In the case of StackOverflow questions, 10 of them have ac-

cepted answers with fixing strategies proposed. The proposed

strategies are no different from what we see in real-world web

applications. Since the actual patch being applied in practice

is only mentioned in one StackOverflow question, we do not

include it in Table IV.

VI. RELATED WORK

Earlier in this paper, we have discussed some related work

on deadlocks in multi-threaded programs and web applica-

tions. Our results suggest that existing work cannot handle

a large portion of real-world deadlocks in web applications,

especially those inter-request deadlocks on database locks.

While there are studies focusing on concurrency bugs in web

applications [37], [57], [64], they do not cover deadlocks.
Server-side web applications have been the subject of a lot

of existing research, and we next briefly discuss other related

work on server-side web applications. Many different tech-

niques have been proposed for improving their reliability [26]–

[28], [38], [42], [53]–[55], [61], mostly focusing on program

analysis, bug detection, input generation, or automated repair.

Techniques focusing on the security aspect of web applications

have also been proposed, e.g., auditing [48], [63], intrusion

detection and recovery [33], [34], [52], identifying information

disclosure [35]. However, none of them handles deadlocks.

VII. THREATS TO VALIDITY

Our study may be subject to several validity threats. Next,

we describe potential threats and our ways to address them.

(1) We may not include all representative web applications.

To minimize this threat, we choose popular open-source

applications with a significant user base from state-of-the-

art studies on web applications, and we search deadlocks

in all applications from these studies that are still available.

We further include StackOverflow questions to further enrich

our understanding of deadlocks on database locks. Our re-

sults show the characteristics are similar for database-lock

deadlocks from web-application bugs and those based on

StackOverflow questions. So the characteristic study results

can likely be generalized to other web applications. (2) We

may miss relevant bug reports while searching for deadlocks.

We mitigate this threat by using keyword search in both bug

descriptions and comments together with bug categories and

tags. (3) We inspect bug reports manually. To alleviate this

threat, each report is examined by at least two authors, and the

group discusses the bug report together to reach a consensus.

VIII. CONCLUSION

In this paper, we characterize deadlocks from real-world

web applications based on the number of HTTP requests and

the types of resources involved. For deadlocks on database

locks, we further categorize their hold-and-wait cycle patterns

and fix strategies. The patterns and concrete examples pre-

sented in this paper can help application developers understand

and diagnose deadlocks that they may encounter. Our study

results can also guide future research in combating deadlocks

in web applications.
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