
Automatic Server Hang Bug Diagnosis:

Feasible Reality or Pipe Dream?

Daniel J. Dean, Peipei Wang, Xiaohui Gu, William Enck, and Guoliang Jin

North Carolina State University

Raleigh, North Carolina 27613

Email: {djdean2,pwang7}@ncsu.edu, {gu,enck}@csc.ncsu.edu, guoliang jin@ncsu.edu

Abstract—It is notoriously difficult to diagnose server hang
bugs as they often generate little diagnostic information and
are difficult to reproduce offline. In this paper, we present a
characteristic study of 177 real software hang bugs from 8
common open source server systems (i.e., Apache, Lighttpd,
MySQL, Squid, HDFS, Hadoop Mapreduce, Tomcat, Cassandra).
We identify three major root cause categories (i.e., programmer
errors, mishandled values, concurrency issues). We then describe
two major problems (i.e., false positives and false negatives) while
applying existing rule-based bug detection techniques to those
bugs.

Keywords—hang bugs, characteristic study, performance

I. INTRODUCTION

When software hang bugs occur in production servers,
millions of users can be affected. For example, in August of
2013, a 25-minute service outage of the Amazon Web Ser-
vices [2] brought down many popular web sites such as Vine,
Instagram, and Flipboard as well as Amazon itself [19]. It is
notoriously difficult to diagnose those server hang bugs. On
one hand, those hang problems often produce little diagnostic
information (e.g., error messages) to help the developer to
debug them. On the other hand, it is often difficult to reproduce
those server hang problems for offline debugging.

A. Summary of the State of the Art

A recent study [27] finds that poor error handling was
the major cause for many failures in distributed data-intensive
systems (e.g., Cassandra, Hadoop Mapreduce). HangWiz [23]
automatically identifies hang bugs using static analysis to find
the intersection between functions which block for some period
of time (e.g., connect) and functions expected to complete
in a timely fashion (e.g., UI update functions). However, our
study shows that the root cause of server hang bugs are
not limited to those identified problems. Previous work [6],
[13], [25] have developed rule-based or heuristic-based static
checkers to identify software bugs. However, these tools all
rely on the premise that simple bug identification rules can be
defined using a-priori information (e.g., existing patches) and
then statically checked for bug detection. When such rules are
difficult to define, it is challenging to adapt those rule-based
techniques for automatic server hang bug diagnosis. A flurry
of research work [26], [22], [21], [17], [24], [7] has been done
to automatically identify and fix concurrency bugs using static
analysis. Although these techniques are effective at identifying
and fixing concurrency bugs, these types of techniques cannot
be used to automatically identify or fix many of the hang bugs
we studied.

B. Our Contributions

In this paper, we present a characteristic study of 177
software hang bugs affecting 8 commonly used open source
server systems (i.e., Apache, Lighttpd, MySQL, Squid, HDFS,
Hadoop Mapreduce, Tomcat, Cassandra). We have identified
three major categories which can effectively describe the root
causes of those hang bugs. We describe in detail the types
of bugs we assign to each category along with examples of
the types of fixes that are typically applied to the bugs in
each category. Specifically, this paper makes the following
contributions:

• We identify that programmer errors, mishandled val-
ues, and concurrency issues are the three major rea-
sons why software hangs occur in server systems.

• We find that static bug detection rules extracted from
81% of the studied hang bugs would generate false
positives when used to find new bugs in either the
same system or different systems. This makes it diffi-
cult to apply existing static analysis tools to diagnose
server hang bugs.

• We discover that rules extracted from 64% of the
studied hang bugs would be specific to a particular
bug or software version. This causes false negatives
in cases where bug variations or code changes are
present.

Although there are issues (i.e., false positives, false nega-
tives) with applying existing bug analysis schemes to the bugs
we have studied, we believe automatic hang bug diagnosis
is both necessary (as manual diagnosis is difficult and time
consuming) and possible (after combining static rule checkers
with runtime bug inference hints [9], [10], [8]. The aim of
this study is to aid the development of automatic diagnosis
tools by giving insight into different common causes of these
bugs, helping to identify how to develop new techniques
for mitigating these issues. For example, knowing incorrect
timeout values are a common cause of hang bugs in many
applications can enable the development of new tools designed
only to target a subset of functions at runtime. In this case,
runtime hints could indicate that a blocking connect function
call without a timeout is taking longer than usual to complete,
which would allow self-healing tools to automatically kill or
close the connection. We also hope the observations of our
study could help developers avoid hang bugs when developing
new applications.

TABLE I: The applications we studied along with the number of bugs
we examined.

System
Name

Type Language
(LOC)

of
bugs

Apache web server C/C++
(161K)

13

Lighttpd web server C
(38K)

6

MySQL database C/C++
(1M)

45

Squid proxy/web
cache

C/C++
(180K)

18

HDFS file system Java
(153K)

21

Hadoop
MapReduce

data
processing
framework

Java
(1.3M)

35

Tomcat web
server/servlet
container

Java
(285K)

10

Cassandra database Java
(168K)

29

The rest of this paper is organized as follows. We first
present the methodology of our study in Section II. We
then present our characteristic study in Section III. Next, we
describe the issues we have identified with applying existing
rule-based static analysis techniques to the bugs we studied in
Section IV. Finally, we conclude the paper in Section V.

II. METHODOLOGY

In this section we describe the methodology of our study.
We begin by discussing how we collected the 177 hang
bugs. Next, we briefly describe the root cause categories for
classifying those hang bugs.

A. Bug Collection

We chose eight commonly used open source systems to
study: Apache [3], Lighttpd [16], MySQL [18], Squid [20],
HDFS [12], Hadoop MapReduce [11], Tomcat [5], and Cas-
sandra [4]. Each of these systems has well maintained bug
reporting databases where users can report bugs they have
encountered. As shown in Table I, these systems range from
distributed databases to web-servers to web-proxies. All of
those systems are and well maintained mature server systems,
consisting of 38K to 1.3 million lines of code.

The bug reporting databases for each system we studied
vary in implementation. However, each of the bug reporting
databases allow users to search for bugs using search strings.
To identify issues, we searched each of the databases for rel-
evant hang bug terms. Specifically, we searched for the terms
hangs, 100% CPU, stuck, and performance. We used the de-
veloper provided tags to search the MySQL database as well.
We only considered bug reports which were closed with a
resolution of being fixed. In addition, the majority of the bugs
were marked as high priority bugs with tags such as “critical”.

The search we performed resulted in several thousand
matched bug reports. We manually examined the title and bug
descriptions of those bugs to identify real hang bugs. We also

removed any bug that did not have any root-cause details pro-
vided (e.g., patch). In particular, this caused us to remove many
Lighttpd bugs as details are commonly omitted from those bug
reports. After this initial filtering, we were left with 177 bugs,
which we then studied in detail by reading the comments along
with any provided patches.

Our bug collection was done without any bias across the
eight systems we studied. In addition, we chose these systems
to study as we feel they represent a good mix of the different
types of server-side software. The results of our study are
consistent across the eight systems. However, we do not claim
by any means that our study is exhaustive and has studied all
existing bugs for each system.

B. Root Cause Categories

Based on our analysis of the 177 hang bugs, we have
identified three major categories to classify the root causes
of those hang bugs. We then divide each general category
into different sub-categories to further classify each bug. The
general categories indicate how the error is introduced to the
code while the sub-categories describe common root causes.

• Programmer error: Each bug assigned to this cat-
egory represents a situation involving programmer-
related issues. These issues range from failing to set
a timeout value for a function call to API misunder-
standing. We further divide this category into three
sub-categories: 1) Incorrect timeout bugs involving ei-
ther a timeout or wait value which is either missing or
set incorrectly; 2) API misuse bugs resulting from de-
velopers using a function or variable in a way which it
was not intended; and 3) missing function call(s) bugs
resulting from one or more missing function calls.

• Mishandled values: The bugs assigned to this cat-
egory represent situations in which a value is mis-
handled in some way. This can include situations in
which a function returns an unexpected value or where
an error handler is incomplete. We further divide this
category into five sub-categories: 1) incorrect condi-
tional check bugs resulting from either a missing con-
ditional check or a conditional check which does not
perform as expected; 2) improper error handling bugs
involving cases in which an error condition is han-
dled incorrectly; 3) unanticipated return value bugs
occurring when a function returns a value which the
developers did not expect; 4) unanticipated input bugs
occurring when an unexpected input causes the system
to hang; and 5) incorrect value definition bugs result-
ing from a system using an undefined or incorrectly
defined value.

• Concurrency: Each bug assigned to this category
caused an application hang problem due to a concur-
rency issue. We divide the bugs in this category into
two sub-categories: 1) deadlock bugs involving situa-
tions where two operations are waiting on each other
to complete; and 2) race condition bugs involving a
situation where a series of concurrent commands cause
an application to hang.

Although most of the hang bugs are only assigned to a
single category, those categories are not mutually exclusive.

A
pa

ch
e

Lig
ht

tp
d

M
yS

Q
L

Squ
id

H
D

FS

H
ad

oo
p

M
ap

R
ed

uc
e

Tom
ca

t

C
as

sa
nd

ra

0

5

10

15

20

25

00

N
u

m
b

er
 o

f
B

u
g

s

 Programmer error

 Mishandled values

 Concurrency

0

Fig. 1: Statistics on the 177 real hang bugs we examined.

For example, an improper error handling bug can occur as the
result of an unanticipated return value.

III. ROOT CAUSE STUDY

Our root cause study focuses on two issues: why a server
hang problem occurred? and how are those hang problems
fixed? In this section, we first present an overview of how
the different server systems we examined were affected. We
then discuss the three major categories of programmer error,
mishandled values, and concurrency, in detail.

A. Overview

Figure 1 shows the bug categories along with the number of
bugs for each system in each category. We observe that not all
the systems were affected equally by different types of bugs.
We believe that this is due to the role of the different systems.
For example, we found race condition bugs affected Hadoop
MapReduce more than the other systems. This is likely due to
the distributed nature of the system coupled with its complexity
and typical deployment scale (i.e., 1000s of nodes).

Figure 2 shows the overall statistics of the bugs in each
of the sub-categories ranked in descending order. As shown,
the incorrect conditional check, timeout, and deadlock sub-
categories have the most bugs assigned to them. Out of these,
the incorrect timeout value finding was surprising, indicating
that developers often do not expect certain calls to fail to
complete.

B. Programmer error

Incorrect timeout: We identified 26 bugs in this category.
Each of these bugs is the result of a timeout value being either
missing or incorrectly set on operation. The operations are
typically blocking operations (e.g., connect) but can also be
non-blocking commands (e.g., UI update functions).

For the bugs where a timeout value is missing, the reported
issue is typically a hung server under certain conditions (e.g.,
specific request). This is usually because the buggy function
typically expects the requested operation to always complete.
For example, HDFS-14901 describes a case where a missing

1We describe bugs using system name-bugID.

Race condition

Unanticipated return val

Missing function call(s)

Unanticipated input

API misuse

Incorrect value definition

Improper error handling

Deadlock

Incorrect timeout

Incorrect conditional check

0 5 10 15 20 25 30

 Programmer error

 Mishandled values

 Concurrency

Number of bugs

Fig. 2: The statistics of the bugs assigned to each sub-category.

timeout value on a blocking socket call causes the system to
hang indefinitely. The fix for this problem was simply to ensure
a timeout value was set on the blocking call.

API misuse: We identified 15 bugs in this category. Each of
these bugs occurs as the result of the developer’s misunder-
standing about which flags or functions to use.

An example of how these bugs can cause the system to
hang is shown by Squid-3084. In this bug, there was a mis-
understanding of which function call to use when handling
an IPv6 address. Using the incorrect function call with an
IPv6 address causes the connection to hang. As with the other
examples in this category, the fix was to correct the misunder-
standing (i.e., use the correct function call).

Missing function call(s): We identified 13 bugs in this cat-
egory. These bugs are the result of a missing function call
causing the system to hang for a period of time.

A simple example of this is Cassandra-5635. In this bug,
the system hangs when a call setting the thread to run as a
daemon was omitted. When a stop command is issued and the
system is not running as a daemon, it will not shut down all
threads because it expects more commands to be interactively
issued. The fix was to add the missing function call.

Observation 1 Simple issues caused by programmers mis-
understanding about how system components should be used
were responsible for hangs in all the systems we tested.

The most surprising thing we found in this category was
the number of bugs that occurred as a result of a timeout value
being either missing or incorrect. Applying existing techniques
to these types of problems is difficult due to false positives. For
example, setting a timeout value to all functions may not be
correct for long running functions. Additionally, we found the
other sub-categories are susceptible to false negatives because
they require developer knowledge to find and fix a specific
problem.

C. Mishandled values

Incorrect conditional check: We identified 31 bugs in this
category. Each of these bugs occur when a conditional check is
either incorrect or missing entirely. The incorrect checks cause
parts of the code to be skipped entirely or executed when they

should not be. This puts the system in an unexpected state,
which causes the system to hang indefinitely.

An example of a missing conditional check is Squid-1968.
Here, an internal domain name service (DNS) map used by
Squid to keep track of queries can become corrupted, causing
Squid to hang occasionally. The fix for this bug is simple and
involves the addition of a conditional check to prevent the map
corruption.

We next illustrate when an incorrect conditional check can
cause a system to hang with Cassandra-5064. In this bug, when
altering a table which contains a “collection,” a group of items,
the system can hang. The fix for this issue is to add a flag to
the conditional, forcing the code within the conditional check
to be executed under the conditions causing the bug.

Improper error handling: We identified 22 bugs in this
category. These bugs occur when errors are mishandled by
handlers. Many of these bugs occur as the result of multiple
distributed components interacting with each other unexpect-
edly.

An example of improper error handling causing the sys-
tem to hang is Cassandra-6735. Here, when an exception is
thrown while flushing “memtables” during shutdown, the sys-
tem hangs because the unhandled exception interrupts thread
shutdown. The fix for these types of problems is to make sure
to handle the error in some way.

These bugs can also occur when a functional error (e.g.,
Java “IOException”) handler is incomplete. For example, in
MySQL-11729 when an error causes a system restart, the sys-
tem hangs as a result of the threads failing to close an open
resource. As before, the fix to these bugs are to modify the
error handling mechanism to correctly handle the error.

Unanticipated return value: We identified 13 bugs in this
category. These bugs occur when a function returns a value
the developers did not expect.

In Squid-1484, which is an example of the bugs in this
category, the conditional check in a while loop does not
consider that the return value of open to /dev/null could
be -1, ultimately causing the system to hang. The fix for these
bugs is to add a new conditional check, modify an existing
conditional, or throw an appropriate error (e.g., Java IOExcep-
tion) to handle the unanticipated return value.

Unanticipated input: We identified 14 bugs in this category.
Each bug in this category is the result of an unanticipated
input causing the system to hang. In particular, we found a
large portion of these bugs result from an unexpected large
input.

An example of these bugs is Apache-45856. This bug
causes Apache to hang when trying to open a FastCGI log
larger than 2147483647 bytes. The typical fix to problems in
this category is to use the appropriate function call to handle
the large file.

Incorrect value definition: We identified 16 bugs in this cat-
egory. These bugs occur when a flag or value has been either
incorrectly set or is undefined.

An example of the bugs in this category is MySQL-9814.
Here, a function fails to reset an error reporting flag, which

causes the system to hang. The solution to this bug is typical
of other bugs in this category, which is to add the undefined
value.

Observation 2 Mishandled values were the most common
cause for hangs for all the systems we studied. Developing
rules to identify these problems is difficult.

D. Concurrency

Deadlock: We identified 24 bugs in this category. These bugs
all involve cases where two or more different operations are
waiting for each other to complete. As neither operation can
make any progress until the other finishes, the system will
hang. These situations typically occur when accessing shared
system resources (e.g., system log).

An example bug assigned to this category is MySQL-
54332. In this bug, one connection locks table T1 while another
connection locks table T2 and then executes the INSERT DE-
LAYED command on table T1. As both tables are locked, the
system will hang. The built-in deadlock detector of MySQL
should detect and prevent this deadlock. However, any dead-
locks involving the INSERT DELAYED command are missed
by the deadlock detector in this version of MySQL and thus the
server hangs. The fix for this bug was to update the deadlock
detector in order to ensure the deadlock was correctly detected.

Deadlocks can also occur due to components waiting on
thread operations to complete. For example, HDFS-3541 is a
deadlock bug occurring as the result of a flag not being set
while handling a thread interrupt. The fix is to notify other
threads that an interrupt has occurred.

Race condition: We identified 7 bugs in this category. Each of
the bugs in this category occur when a sequence of operations
leads to the system hanging. These bugs typically only mani-
fest when operations occur in only specific orderings, making
them difficult to reproduce.

An example of the type of bugs in this category is Hadoop
MapReduce-2504. In this bug, a thread is interrupted and then
stopped concurrently. This causes the wrong interrupt handler
to process the interrupt and incorrectly updates the state of the
system. This incorrect state update causes the thread which
should have handled the interrupt to hang, waiting for an in-
terrupt which will never occur. These bugs are typically fixed
by modifying the application code to ensure the race condition
cannot occur. In this case, the bug was fixed by ensuring the
interrupt was consumed by the correct interrupt handler using
different system states.

Observation 3 Despite the fact that concurrency bugs have
been well studied, unexpected distributed component interac-
tions can cause systems to hang. Automatically detecting these
types of interactions is difficult.

There are many well known static analysis techniques de-
signed to identify and prevent concurrency bugs ahead of
time [15], [14]. However, unexpected component interactions
in a distributed environment can lead to deadlocks which ex-
isting approaches cannot detect. Identifying a specific con-
currency bug does not help detect other bugs in many cases,
leading to false negatives.

1 - status = apr_socket_opt_set(lr->sd,

APR_SO_NONBLOCK, 1);

2 - if (status != APR_SUCCESS) {

3 - ap_log_perror(APLOG_MARK, APLOG_STARTUP|

APLOG_ERR, status, pool,

4 - "ap_listen_open: unable to make socket non-

blocking");

5 - return -1;

6 }

7 + status = apr_socket_opt_set(lr->sd,

APR_SO_NONBLOCK, use_nonblock);

8 + if (status != APR_SUCCESS) {

9 + ap_log_perror(APLOG_MARK, APLOG_STARTUP|

APLOG_ERR, status, pool,

10 + "ap_listen_open: unable to control socket non

-blocking status");

11 + return -1;

12 }

Fig. 3: The patch for Apache-37680. The issue is an endless loop
caused by status return value not being checked properly.

IV. ISSUES WITH EXISTING TECHNIQUES

Previous work [13] has developed heuristics from careful
manual analysis of bug reports which then can be applied
to code bases in order to detect new bugs. For example, in
Apache, the setsockopt function can cause performance
problems under certain contexts. A simple rule based checker
can look for this function, raising a warning when found.
However, simple rule-based checkers cannot be written for all
cases. In this section we discuss in detail why simple rule-
based checkers will be difficult to develop for many of the
bugs we studied.

A. False Positives

A false positive occurs when a static detector identifies
a segment of code as containing a bug when there actually
is no bug present. These occur as a result of generic rules
being applied to large code bases. To illustrate why these
false positives occur, we discuss Apache-37680. This bug was
discovered when a user changed some configuration options in
the Apache configuration file and did a graceful restart. Instead
of having the web server come back online as normal in a few
seconds as expected, the user found that the server was hung,
consuming 100% CPU in the process.

The root cause of this bug was a blocking call Apache at-
tempts to make on a reused socket. A graceful restart reuses the
sockets from the previously running instance without clearing
any flags set on the sockets. In this bug, the O_NONBLOCK flag
was previously set on the socket, preventing it from making
blocking calls. When Apache tries to make the blocking call
without clearing this flag, it fails. Although socket call function
returns an integer value indicating whether the call succeeded,
Apache simply checks if the call result was APR_SUCCESS,
retrying otherwise. Because the flag will never be cleared, this
causes the web-server to loop, continuously re-trying the call.
As a result, we assigned this bug to the mishandled values
category.

A snippet of the patch to fix this bug is given in Figure 3.
As the figure shows, there is only one major change to the
application. As shown, instead of having a constant value being

passed to the apr_socket_opt_set function, a variable,
use_nonblock is passed to the function. This variable con-
trols whether a blocking or non-blocking call should be made.
On a graceful server restart, this variable is set to allow non-
blocking calls to be made on the socket and preventing the
infinite loop.

An example type of general rule-based static approaches
could be developed from this patch would be to check if a
constant value is passed to a function as a parameter. The
problem with doing this, however, is most of the time, when
a constant value is passed to a function, there is no problem.
Thus, applying rule-based detectors to these types of bugs is
difficult due to the large number of false positives they pro-
duce.

B. False Negatives

A false negative occurs when a static detector fails to iden-
tify a segment of code as containing a bug when there actually
is a bug present. These can occur when bug are fixed with bug-
specific patches. Any rules generated from such bugs would be
sensitive to code changes, causing missed detections as context
changes. Although the patches themselves may not be very
complex, they usually fix a specific issue and are difficult to
generalize to other problems.

To illustrate this issue we first discuss Hadoop-
MapReduce-3186. In this version of Hadoop, a resource man-
agement component called Yet Another Resource Negotiator
(YARN) [1] was introduced for improved scalability. Although
the resource manager can improve the resource use of applica-
tions, it can also cause new problems. In Hadoop-MapReduce-
3186, if the global resource manager is restarted while a job is
being executed, the job hangs indefinitely in the running state.
The cause of the bug is a result of a lack of a timeout being set
in conjunction with improper exception handling. As a result,
we assign this bug to the mishandled values category.

Because the cause of bug itself is relatively complex, the
patch provided by developers is also complex. A snippet of
the patch, with comments removed, is shown in Figure 4. The
patch involves about 190 lines and changes to functions in four
different files.

This type of patch is tailored to fix the specific problem
in the bug report and cannot be generalized to help fix other
problems. As the code snippet shows, there are very few, if
any rules that can be generated from this problem. Generating
rules from the statements in the entire patch itself would be dif-
ficult. Because code is routinely changed, code additions and
deletions may cause the rules to be ineffective, thus causing
false negatives.

C. Observations

We have estimated the false positives and false negatives
that would occur if rule-based bug detection techniques were
applied to the bugs we studied. Our results are shown in
Figure 5. As shown, we found that a significant portion of
bugs in each category can generate either false positives, false
negatives, or both.

1 ...

2 + try {

3 + response = makeRemoteRequest();

4 + retrystartTime = System.currentTimeMillis();

5 + } catch (Exception e) {

6 + if (System.currentTimeMillis() -

retrystartTime >= retryInterval) {

7 + eventHandler.handle(new JobEvent(this.

getJob().getID(),

8 +

JobEventType.INTERNAL_ERROR));

9 + throw new YarnException("Could not contact

RM after " +

10 + retryInterval + "

milliseconds.");

11 + }

12 + throw e;

13 + }

14 + if (response.getReboot())

15 ...

Fig. 4: A snippet of the developer patch for Hadoop-MapReduce-
3186 which was assigned to the mishandled values category. This
patch is large and complex, making false negatives an issue for any
rules generated from such a patch.

Programmer

error

Mishandled

values

Concurrency
0

10

20

30

40

50

60

70

 P
er

ce
n

ta
g

e
o

f
B

u
g

s
(%

)

 False positives only

 False negatives only

 Both

Fig. 5: The distribution of bugs causing only false positives, only
false negatives, and both false positives and false negatives.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a characteristic study of
177 real world software hang bugs. Our study shows that the
root causes of those hang bugs vary from system to system
with incorrect conditional check, incorrect timeout setting,
and deadlock being the top three root causes. We examine
the applicability of rule-based bug detection techniques to the
software hang bugs we studied and find that they fall short
in terms of high false positives and high false negatives. Our
bug study has indicated that existing static analysis techniques
are not sufficient for detecting and diagnosing server hang
bugs. In order to address the issues of false positives and false
negatives, we are exploring ways of combining runtime hints
with static analysis techniques to achieve precise root cause
analysis. We believe that the observations of our study enable
the development of new tools and make automated server hang
bug diagnosis a feasible reality in the near future.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable
comments. This work was sponsored in part by NSF
CNS0915567 grant, NSF CNS0915861 grant, NSF CAREER
Award CNS1149445, U.S. Army Research Office (ARO) under
grant W911NF-10-1-0273, IBM Faculty Awards and Google
Research Awards. Any opinions expressed in this paper are
those of the authors and do not necessarily reflect the views
of NSF, ARO, or U.S. Government.

REFERENCES

[1] Apache Hadoop 2.6.0-YARN. http://hadoop.apache.org/docs/current/hadoop-
yarn/hadoop-yarn-site/YARN.html.

[2] Amazon web services. http://aws.amazon.com/.

[3] Apache. http://httpd.apache.org/.

[4] Apache Cassandra. http://cassandra.apache.org/.

[5] Apache Tomcat. http://tomcat.apache.org/.

[6] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and W. Pugh.
Using static analysis to find bugs. Software, IEEE, 2008.

[7] L. Chew and D. Lie. Kivati: fast detection and prevention of atomicity
violations. In EuroSys, 2010.

[8] D. Dean, H. Nguyen, and X. Gu. UBL: Unsupervised behavior learning
for predicting performance anomalies in virtualized cloud systems. In
ICAC, 2012.

[9] D. J. Dean, H. Nguyen, X. Gu, H. Zhang, J. Rhee, N. Arora, and
G. Jiang. Perfscope: Practical online server performance bug inference
in production cloud computing infrastructures. In SoCC. ACM, 2014.

[10] D. J. Dean, H. Nguyen, P. Wang, and X. Gu. Perfcompass: toward
runtime performance anomaly fault localization for infrastructure-as-a-
service clouds. In HotCloud, 2014.

[11] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on
large clusters. In OSDI, 2004.

[12] Hadoop Distributed File System. http://hortonworks.com/hadoop/hdfs/.

[13] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu. Understanding and
detecting real-world performance bugs. In PLDI, 2012.

[14] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit. Automated atomicity-
violation fixing. In PLDI, 2011.

[15] G. Jin, W. Zhang, D. Deng, B. Liblit, and S. Lu. Automated
concurrency-bug fixing. In OSDI, 2012.

[16] Lighttpd. http://www.lighttpd.net/.

[17] Y. Lin and S. Kulkarni. Automatic repair for multi-threaded program
with deadlock/livelock using maximum satisfiability. In ISSTA, 2014.

[18] MySQL. http://www.mysql.com/.

[19] Amazon Web Services suffers outage, takes down Vine, Instagram, oth-
ers with it. http://www.zdnet.com/article/amazon-web-services-suffers-
outage-takes-down-vine-instagram-others-with-it/.

[20] Squid-cache. http://www.squid-cache.org/.

[21] G. Upadhyaya, S. P. Midkiff, and V. S. Pai. Automatic atomic region
identification in shared memory spmd programs. In OOPSLA, 2010.

[22] M. Vaziri, F. Tip, and J. Dolby. Associating synchronization constraints
with data in an object-oriented language. In POPL, 2006.

[23] X. Wang, Z. Guo, X. Liu, Z. Xu, H. Lin, X. Wang, and Z. Zhang. Hang
analysis: Fighting responsiveness bugs. In Eurosys ’08, 2008.

[24] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. A. Mahlke. Gadara:
Dynamic deadlock avoidance for multithreaded programs. In OSDI,
2008.

[25] D. Weeratunge, X. Zhang, and S. Jaganathan. Accentuating the posi-
tive: atomicity inference and enforcement using correct executions. In
OOPSLA, 2011.

[26] J. Wu, H. Cui, and J. Yang. Bypassing races in live applications with
execution filters. In OSDI, 2010.

[27] D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X. Zhao, Y. Zhang, P. U.
Jain, and M. Stumm. Simple testing can prevent most critical failures:
An analysis of production failures in distributed data-intensive systems.
In OSDI, 2014.

