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ABSTRACT

Modernweb sites often runweb applications on the server to handle

HTTP requests from users and generate dynamic responses. Due to

their concurrent nature, web applications are vulnerable to server-

side request races. The problem becomes more severe with the

ever-increasing popularity of web applications.

We first conduct a comprehensive characteristic study of 157 real-

world server-side request races collected from different, popular

types of web applications. The findings of this study can provide

guidance for future development support in combating server-side

request races.

Guided by our study results, we develop a dynamic framework,

ReqRacer, for detecting and exposing server-side request races in

web applications. We propose novel approaches to model happens-

before relationships between HTTP requests, which are essential

to web applications. Our evaluation shows that ReqRacer can

effectively and efficiently detect known and unknown request races.

CCS CONCEPTS

· Software and its engineering → Software defect analysis;

Software reliability; Software testing and debugging; Concur-

rency control; Organizing principles for web applications; Consis-

tency.
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web-application request races, characteristic study, race detection,

happens-before relationships
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1 INTRODUCTION

Upon receiving HTTP requests, modern web sites dynamically

generate responses by running some programs on the server. We

refer to these programs as server-side web applications, and we

refer to the code that handles each HTTP request as a request

handler. Due to various types of concurrent activities in server-side

web applications, request handlers serving HTTP requests could

encounter race conditions while accessing shared resources and

lead to erroneous behaviors depending on the order of these shared-

resource accesses. Since these races happen on the server side of

web applications while handling HTTP requests, we refer to such

races as server-side request races or shortly as request races.

Several high-profile software failures were caused by request

races, e.g., Instacart coupon double redemption [26], Starbucks

gift-card duplicate balance transfer [36], and Flexcoin bankruptcy

caused by wallet overdraw [30].

In the Instacart incident, a user reported that he was able to

redeem the same coupon more than once with savings stacked

by sending the coupon-redemption request multiple times [26].

Figure 1 shows a high-level explanation based on the incident

description. While serving one coupon-redemption request, the

corresponding request handler will issue multiple database queries,

i.e., one query will first check whether a given coupon has been

redeemed, and if it has not, more queries will mark the coupon as

being redeemed and update the user account with the redeemed sav-

ings. Figure 1a shows the case when these two coupon-redemption

requests are sent synchronously, i.e., sending one request after re-

ceiving the response of the previous request. In this case, these

two requests are handled one-by-one, where only the first request

will add savings to the user account, but the second request will

inform the user that the coupon has already been redeemed. How-

ever, if a user sends the two requests asynchronously as shown in
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Figure 1: A high-level illustration of the Instacart incident

Figure 1b, i.e., sending one request before receiving the response

of the previous request in a different, concurrent client session,

the two requests are handled concurrently, and two concurrent

instances of the same request handler are racing. Under the inter-

leaving shown in Figure 1b, both requests first see that the coupon

has not been used and then both use the coupon, resulting in the

reported coupon double-redemption scenario.

As exemplified by these incidents, request races can lead to

serious service corruption, severe security vulnerabilities, and huge

financial losses. Two recent trends make request races an emerging

threat to the reliability and security of web applications. First, the

development of cloud platforms greatly eases the deployment of

web applications, and the number of web applications increases.

Secondly, getting access to web sites is eased by the increasing

population of handheld devices, and the chance of encountering

request races increases with more concurrent requests. We are in

great need of a comprehensive understanding of request races and

effective techniques for detecting them.

1.1 Limitations of Existing Work

In this multi-core era, a lot of research efforts have been spent on

thread races in multi-threaded programs. Researchers have con-

ducted characteristic studies [34, 55] and proposed various tech-

niques for different purposes, e.g., bug detection [25, 33, 39, 67,

77, 78], program testing [49, 62, 68, 71, 74], failure diagnosis [20,

21, 42, 56], and fixing [41, 43, 52, 53]. Since web applications are

commonly hosted on top of some multi-threaded programs, e.g.,

Apache HTTPD and MySQL, one may have the misconception that

request races are a solved problem given the research progress on

thread races.

However, thread-race detection techniques cannot detect request

races. The request race shown in Figure 1 happens between two

instances of the same request handler racing on database records,

and the problematic interleaving on database queries manifests as

an atomicity violation, where the violated atomicity assumption

is among multiple queries issued by a single request handler. The

request race cannot be detected as a thread race in the HTTP server

program, as the shared data is stored in a database but not in the

shared memory of the HTTP server program. It also cannot be

detected as a thread race in the database program, as each database

query is atomically processed when the request race happens in

Figure 1. Therefore, there is no thread race from the viewpoint of

the HTTP server or the database. Essentially, thread races happen

in the system layer, which is below the application layer where

request races happen. Through the discussion above, we can see

that request races can happen even if there are no thread races, and

thus thread-race techniques are not effective for request races.

Recent techniques for process races on the operating-system

level [47] and distributed concurrency bugs in distributed and cloud

systems [48, 50, 51, 54] are also not effective for request races. The

reasons are generally two-folded. First, these techniques also target

races in the system layer but not in the application layer, and the

races detected by these techniques are not necessarily request races.

Secondly, even if these techniques can detect some request races,

they could report many false positives, as they do not consider

application semantics while modeling happens-before relationships.

We will expand the discussion on the second point later.

Not only one cannot directly use these existing techniques to

detect request races, but server-side web applications also bring

unique challenges to adapt existing approaches to detect request

races. Dynamic race detection now commonly follows the tracing-

inference-validation architecture, i.e., a tool first traces dynamic

executions where races do not manifest, then infers races following

common race manifestation characteristics, and finally validates

the inferred races during replay runs. However, we face two major

challenges to adapt this tracing-inference-validation architecture

for request-race detection in web applications.

First, we currently lack a comprehensive understanding of real-

world request-race characteristics to guide the three stages in the

tracing-inference-validation architecture and make the approach

effective and efficient. Only recently researchers have conducted

characteristic studies on request races in applications developed

with JavaScript on top of the Node.js framework [31, 72]. However,

these two studies do not specifically focus on web applications but

include many middleware and desktop applications, and their study

results cannot provide sufficient coverage for real-world request

races in representative server-side web applications.

Secondly, server-side web applications require new techniques

to model happens-before relationships and determine which re-

quest handlers can run concurrently. For example, one common

way to establish a happens-before relationship between two re-

quests is to send the second request by clicking a button on the

web page returned for the first request. Such happens-before re-

lationships cannot be modeled by existing techniques that mostly

focus on modeling happens-before relationships established with

synchronization operations.

Recently, client-side races in web applications have drawn much

attention from the research community. Researchers have proposed

several techniques [18, 24, 40, 58, 63, 64, 76] for client-side race

detection. Since they focus on the interaction between the HTML

Document Object Model (DOM) and asynchronous event-driven

JavaScript executions on the client side, the happens-before rela-

tionships modeled by existing techniques do not readily capture
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dependencies between different HTTP requests. Although both the

client side and the server side are integral parts of web applications,

request races on the server side are arguably more critical as they of-

ten affect persistent system resources, e.g., the coupon redemption

information in the Instacart incident stored in the database.

Lastly, specific to server-side request races, only a few groups

of researchers have explored techniques to detect them so far and

proposed dynamic [45, 61], static [80], and model-checking [35]

approaches. The dynamic and static approaches [45, 61, 80] only

detect request races between two instances of the same request

handler, and one of them [45] further limits itself to one sub-type

of request races. Since it is almost always possible to send the

same request multiple times asynchronously with command-line

tools and invoke multiple concurrent instances of the same request

handler, there is no need to model happens-before relationships

in the limited scope of request races targeted by these techniques.

Although they can detect request races like the one in Figure 1, their

design choices lead to major coverage issues, and they cannot detect

request races between distinct request handlers, leading to false

negatives. If one applies these prior techniques also for detecting

races between different request handlers, every pair of request

handlers will be considered as potentially concurrent, leading to

a large number of false positives to be pruned with the costly

replay stage. On the other hand, the model-checking approach [35]

alleviates the need to model happens-before relationships between

distinct request handlers by constructing concurrent test cases

manually, limiting the applicability of the approach.

1.2 Contributions

To better understand request races and guide the design of request-

race detectors, we first conduct a characteristic study on 157 server-

side request races collected from the bug-tracking systems of web

applications developed with different languages and frameworks,

covering PHP, Perl, Python, C#, Java, Ruby-on-Rails, and Node.js.

Our study is the largest and most comprehensive to date for server-

side request races. It reveals many general findings on racing-

resource types, manifestation conditions, root-cause patterns, the

effects of races, and fix strategies, which are useful to guide the

development of comprehensive tool support for request races. We

also investigate how external factors, such as language/framework

differences, affect the characteristics of request races.

Our study confirms several observations we made earlier: (1)

request races are numerous and a real threat to the reliability and

security of server-side web applications, (2) request races are indeed

different from system-layer races that the root causes and fixes of

all the studied request races are in the application layer, and (3) it

is necessary to design new detection techniques that can handle

request races beyond those between multiple instances of the same

request handler, as a significant portion of the studied request races

are between distinct request handlers.

We then present ReqRacer, a dynamic framework for detecting

request races beyond those between two instances of the same

request handler. To make it easy to deploy and broadly applicable,

ReqRacer traces only on the server side and thus requires no

change to browsers or other forms of clients. ReqRacer currently

focuses on detecting request races manifest as atomicity violations,

as they account for 137 out of the 157 request races we studied.

ReqRacer follows the tracing-inference-validation architecture

mentioned earlier, and its design is guided by some key results from

our characteristic study. Specifically, our study shows that all the

studied races manifesting as atomicity violations can be triggered

by two concurrent requests, i.e., the buggy interleavings that can

lead to erroneous behaviors only involve shared-resource accesses

issued by two concurrent request handlers with one request handler

on each racing side. With this result, ReqRacer detects request

races by checking whether there are commonly seen unserializable

interleaving patterns either between two instances of the same re-

quest handler or between two distinct request handlers that can be

concurrent. To this end, ReqRacer reports two request handlers as

having a true, harmful race if their corresponding requests are con-

current and the inferred unserializable interleavings cause errors

or undesired behaviors in replay runs.

Our major contribution lies in ReqRacer’s novel approach for

constructing a dependency graph to model happens-before relation-

ships between requests, with which ReqRacer recognizes requests

that are potentially concurrent. ReqRacer models two types of

dependencies that are common in web applications. The first is a

Request-Response-Request (RRR) dependency, and it exists when one

request can only be sent after the response of the previous request

has been received by the client. The second is a Select-by-Primary-

Key (SPK) data dependency, and it exists when a latter SELECT

query specifies a primary key and retrieves one row inserted by an

earlier query. The RRR dependency is natural for web applications,

and the purpose of the SPK-data dependency is to quickly prune

request races that would otherwise result in replay divergences dur-

ing the validation stage, where a replay divergence happens when

the request handlers involved in the request race to validate exe-

cute significantly different business logic comparing the recorded

run and replay run. Similar to the previous work on detecting and

validating process races [47], ReqRacer prunes a request race as a

false positive when a replay divergence happens, and the SPK-data

dependency can greatly reduce the number of false positives that

need to be pruned through replay.

We implemented a prototype of ReqRacer for the LAMP (Linux,

Apache, MySQL, and PHP) stack. We evaluated ReqRacer with

12 request races that we reproduced from our studied bugs. These

12 bugs cover all the four web applications used in our study that

are developed with PHP, i.e., MediaWiki, WordPress, Moodle, and

Drupal. Our evaluation results show that ReqRacer can effectively

and efficiently detect and expose these known bugs based on traces

from recorded runs where request races do not manifest. ReqRacer

also found at least four new request races that were unknown to

us with the testing workloads for the 12 real-world bugs, and two

of them have already been confirmed by developers.

2 SERVER-SIDE REQUEST-RACE STUDY

In our characteristic study, we follow the same methodology as

taken by existing studies on concurrency bugs in multi-threaded

applications [55], races in Node.js applications [31, 72], and perfor-

mance bugs in web applications [69, 73]. Below, we first describe

the methodology and then detail the results.
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Table 1:Web applications andnumbers of bugs being studied

Application
(Abbreviation)

Server-Side
Language

Number on
Server Side

Number on
Client Side

WordPress (WP) [16] PHP 18 22
MediaWiki (MW) [8] PHP 28 10
Drupal (DPL) [5] PHP 31 7
Moodle (MDL) [9] PHP 15 8
BugZilla (BZ) [1] Perl 11 0
Odoo (OD) [12] Python 2 8
DNN (DNN) [4] C# 4 1
OpenMRS (MRS) [13] Java 2 0
Gitlab (GL) [6] Ruby 26 5
Discourse (DC) [3] Ruby 7 2
Redmine (RM) [14] Ruby 2 0
Spree (SPR) [15] Ruby 0 2
Node.js-based (Node.js) Javascript 11 1
Total 157 66

2.1 Methodology

Table 1 summarizes the number of studied race-induced bugs and

web applications from the bug-tracking systems of which these

bugs are collected. We study bugs from two major types of web

applications: (1) classical ones that access database by constructing

SQL queries directly, and (2) those implemented on top of Ruby-on-

Rails, which provides Object-Relational-Mapping (ORM) support.

We started with popular open-source web applications that have

been previously studied by existing performance-bug studies [69,

73], which have 7 non-ORM applications and 12 ORM applications,

respectively. We also included extra non-ORM web applications

that we have experience with.

To collect races, we searched across the bug-tracking systems of

these applications for closed bugs using keywords related to races,

such as łrace(s),ž łconcurrency,ž łatomic,ž and łsynchronization.ž

Then, we manually filtered out results obviously not related to

races, e.g., łbracesž or łtracesž can be returned while searching for

łrace.ž After keyword search and filtering, we obtained around 1400

bug reports. We then manually examined each bug with sufficient

information for us to understand the root cause, and we collected

bugs with clear root causes that are related to races. Our final

selection includes a total of 211 bugs from 12 popular open-source

web applications covering six different server-side programming

languages. We omit applications without any race-induced bugs.

We also included race-induced bugs in Node.js-based web appli-

cations from the two previous studies on Node.js projects [31, 72],

the total of which is 12 as other bugs are either in Node.js-based

middleware or desktop applications but not web applications. Since

these 12 bugs are in 12 different Node.js web applications, we omit

their names due to space limit.

After collecting race-induced bugs from the bug-tracking sys-

tems of these web applications, two inspectors first independently

checked all available resources, e.g., source code, developer discus-

sions, and patches, compared their characterization results, and

resolved disagreement if any.

Among the 223 bugs we collected, 157 are induced by server-

side races, and 66 are induced by client-side races. Note that we

included all race-induced bugs that we could understand regardless

of whether they are on the server side or on the client side while

collecting the bugs, and the separation of server-side races from

client-side races was done after we collected all race-induced bugs.

Such a distribution shows that server-side races are indeed under-

studied compared with client-side races and warrant more research

attention. Our investigation focused on the server-side races, and

future work can further study the client-side races.

2.2 Characteristic-Study Results

Table 2 summarizes our findings. Before describing the details, we

note that two general observations we made during our character-

istic study are aligned with our argument made earlier, i.e., existing

system-layer race detection techniques are not effective for request

races. First, all the server-side races in web applications we studied

are in the application layer but not in the system layer. Secondly,

we do not see a case where developers used existing race detection

tools to help debugging, which arguably implies that (1) practical

thread-race detection tools commonly mentioned in thread-race

bug reports are not useful for request races, and (2) tool support

for debugging request races is in great need. Below, we detail the

results on the following characteristics: racing-resource types, root-

cause patterns and manifestation conditions, the effects of races,

and fix strategies. We end this section with a discussion on how

these results depend on external factors.

Racing-resource types. Databases, files, cache using modules

like Redis or Memcached, and shared-memory data structures are

the racing resources we found in our studied request races. Four

bugs involve consistency issues between database and cache, and

their racing resources include both databases and cache. While

thread-race techniques cover shared-memory data structure and

process-race techniques [47] cover files as a racing resource, tools

targeting request races need to further model and analyze accesses

to databases and cache. Further, some races involve inconsistency

between database and cache, which needs to be accounted for.

Root-cause patterns and manifestation conditions. In our

studied bugs, atomicity violation and order violation are the two

root-cause patterns of how the shared-resource accesses in racing

request handlers can lead to failures or undesirable effects. All

studied races involving only one request, i.e., intra-request races,

manifest as order violations, and all studied races involving two

requests, i.e., inter-request races, manifest as atomicity violations.

For atomicity violations, all studied races can manifest with two

racing request handlers, and the violated atomicity assumption is

on accesses within a single request handler but not across mul-

tiple request handlers. As a result, we only need to check pairs

of concurrent request handlers to detect request races manifest-

ing as atomicity violations on shared-resource accesses. However,

not all atomicity violations can manifest with two instances of the

same request, which will be handled by the same request handler.

One-third of them require two requests that will be handled by

different request handlers. Existing dynamic request-race detection

techniques in literature [45, 61] only check races between a request

handler with itself, and they will miss all races requiring two differ-

ent request handlers. We are in great need of techniques that can

detect request races between distinct request handlers.

For order violations, all the studied cases are due to asynchronous

execution. Since modern ORM and Node.js frameworks have built-

in support for asynchronous execution, web applications built with

such frameworks are more prone to order violations, which is partly
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Table 2: Overall characteristic-study results

WP MW DPL MDL BZ OD DNN MRS GL DC RM Node.js Total
Number of bugs studied 18 28 31 15 11 2 4 2 26 7 2 11 157

Racing-Resource Types
Database 11 20 18 11 11 1 1 0 19 5 2 5 104
File 3 3 10 4 0 1 3 1 2 2 0 0 29
Cache with modules like Redis or Memcached 5 5 4 1 0 0 0 0 1 0 0 0 16
Shared-memory data structure 0 1 0 0 0 0 0 1 4 0 0 6 12

Root Cause Patterns and Manifestation Conditions
Atomicity violation with two instances of the same request handler 10 21 22 9 6 2 3 2 6 2 2 6 91
Atomicity violation with two different request handlers 8 7 9 6 4 0 1 0 6 3 0 2 46
Order violation within one request handler 0 0 0 0 1 0 0 0 14 2 0 3 20

Effects of Database Races
Database error on duplicate data insertion 2 11 11 1 3 0 0 0 3 0 0 0 31
Application error caused by duplicate data 4 0 2 4 1 1 1 0 1 0 1 1 16
Inconsistent or stale view 5 8 5 6 7 0 0 0 11 4 0 4 50
Misleading error message 0 1 0 0 0 0 0 0 0 0 0 0 1
Program crash or failure 0 0 0 0 0 0 0 0 4 1 1 0 6

Fix Strategies for Database Races
Atomicity violation: Change application logic 4 5 3 2 1 0 0 0 7 1 0 0 23
Atomicity violation: Handle the race properly when it happens 2 6 4 5 1 0 0 0 3 0 0 0 21
Atomicity violation: Guarantee column value uniqueness 2 0 0 3 1 0 1 0 1 0 1 1 10
Atomicity violation: Use duplication-tolerant SQL query 1 5 0 0 0 0 0 0 0 0 0 0 6
Atomicity violation: Refactor query statement 0 1 7 1 0 1 0 0 0 1 0 0 11
Atomicity violation: Add transaction or leverage existing transaction 0 0 0 0 3 0 0 0 0 1 0 0 4
Atomicity violation: Lock the table 0 2 3 0 4 0 0 0 0 0 1 0 10
Atomicity violation: Use atomic API 0 0 0 0 0 0 0 0 0 0 0 3 3
Atomicity violation: Fix in frontend 2 1 1 0 0 0 0 0 0 0 0 0 4
Order violation: Enforce order by callback function 0 0 0 0 0 0 0 0 5 1 0 1 7
Order violation: Use synchronous execution 0 0 0 0 0 0 0 0 2 0 0 0 2
Order violation: Remove transaction 0 0 0 0 1 0 0 0 1 1 0 0 3

Effects of File Races
Duplicate file/directory creation 1 1 5 1 0 1 1 0 1 0 0 0 11
File data corruption 1 1 3 2 0 0 1 0 0 1 0 0 9
Non-existing file/directory error 1 1 2 1 0 0 1 0 1 0 0 0 7
Misleading error message 0 0 0 0 0 0 0 1 0 1 0 0 2

Fix Strategies for File Races
Atomicity violation: Change application logic 0 0 1 1 0 0 0 0 0 0 0 0 2
Atomicity violation: Handle the race properly when it happens 0 1 7 2 0 1 0 1 2 1 0 0 15
Atomicity violation: Guarantee file name uniqueness 1 2 1 1 0 0 0 0 0 1 0 0 6
Atomicity violation: Add file lock 2 0 1 0 0 0 3 0 0 0 0 0 6

Effects of Cache Races
Inconsistent or stale view 5 5 4 1 0 0 0 0 1 0 0 0 16

Fix Strategies for Cache Races
Atomicity violation: Change application logic 2 4 3 0 0 0 0 0 0 0 0 0 9
Atomicity violation: Handle the race properly when it happens 0 1 1 1 0 0 0 0 0 0 0 0 3
Atomicity violation: Guarantee cache key uniqueness 3 0 0 0 0 0 0 0 0 0 0 0 3
Order violation: Use proper cache API 0 0 0 0 0 0 0 0 1 0 0 0 1

Effects of Shared-Memory Data Structure Races
Application error or exception 0 1 0 0 0 0 0 1 4 0 0 0 6
Request never be responded to 0 0 0 0 0 0 0 0 0 0 0 2 2
Program crash or failure 0 0 0 0 0 0 0 0 0 0 0 4 4

Fix Strategies for Shared-Memory Data Structure Races
Atomicity violation: Use database instead 0 1 0 0 0 0 0 0 0 0 0 0 1
Atomicity violation: Add language-provided lock 0 0 0 0 0 0 0 1 0 0 0 0 1
Order violation: Change application logic 0 0 0 0 0 0 0 0 2 0 0 4 6
Order violation: Add condition to enforce order 0 0 0 0 0 0 0 0 0 0 0 2 2
Order violation: Read again after a delay 0 0 0 0 0 0 0 0 2 0 0 0 2

reflected by the fact that only one out of the 20 order violations are

in the first eight non-ORM, non-Node.js web applications.

Unserializable interleaving patterns in atomicity violations.

To summarize unserializable interleaving patterns in atomicity vio-

lations, we follow the arguments raised by Zheng and Zhang [80] in

their work of static detection of request races manifesting as atomic-

ity violations. Specifically, operations like file append and database

delete cannot be modeled as write operations. For example, a local

SELECT query and a local DELETE query interleaved with a remote

DELETE query on the same database record is unserializable if they

are modeled as 𝑅𝑊 ′
𝑊 . However, this is wrong as it has the same

consequence as first performing the local SELECT and DELETE

queries and then the remote DELETE query. Therefore, they in-

troduced two new operation categories, i.e., 𝐴 for append and 𝐷

for delete, and𝑊 is now specifically for overwrite or update. With

these four types of operations,𝐴𝐷𝑅𝑊 , defined, a lot of interleaving

patterns are possible. They further argued that a lot of them are

unlikely in practice and suggested four unserializable interleaving
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Table 3: The patterns of unserializable interleavings and

their numbers in our studied request races

Pattern Number
1 (𝜖 |𝑅)𝑅′ (𝐴 |𝑊 |𝐷) (𝐴′ |𝑊 ′ |𝐷′ |𝑅′) 114
2 𝐴(𝐴′ |𝑅′ |𝑊 ′)𝐴 2
3 𝑊 (𝐴′ |𝑅′) (𝑊 |𝐴) 3
4 𝐷𝐷

′
𝐴𝐴

′ 4
5 (𝐴 |𝑊 ) (𝐴′ |𝐷′ |𝑊 ′)𝑅 14

patterns that could happen in practice: (1) 𝑅𝑅′(𝐴|𝑊 |𝐷) (𝐴′ |𝑊 ′), (2)

𝐴(𝐴′ |𝑅′ |𝑊 ′)𝐴, (3)𝑊 (𝐴′ |𝑅′) (𝑊 |𝐴), and (4) 𝐷𝐷 ′
𝐴𝐴

′. 1

With these four unserializable interleaving patterns, we first

matched our studied atomicity violations involving a single resource

against them. For those without an exact match, we modified a

close match or proposed a new pattern. Table 3 summarizes the

results. The first four patterns are mostly the same as the ones by

Zheng and Zhang [80] with the first pattern modified. These four

patterns cannot be further merged, as the first operations of the

four patterns are different. Among these four patterns, the first one

is the most common in our studied bugs. We also found one new

pattern with 14 bugs matching it, where most of these bugs are

races on cache and shared data structures. We did not merge Pattern

(5) with Pattern (2), as that results in (𝐴|𝑊 ) (𝐴′ |𝑅′ |𝑊 ′ |𝐷 ′) (𝐴|𝑅),

but 𝐴𝑅′
𝑅 is serializable. All the four races involving both database

and cache are categorized as Pattern (5). Specifically, the buggy

interleaving is that one request first queries database and caches

the queried results. Before the cached results are accessed, another

request updates the database without invalidating the cache, and

the first request will later access stale data that is not consistent

with the database.

Although the first four patterns are initially proposed by Zheng

and Zhang [80] based on intuition, the value of our results lies

in that we confirm that they are indeed the most common ones

with our collected real-world bugs and we further refine them. We

further summarize one new pattern, i.e., Pattern (5), which Zheng

and Zhang [80] suggested as being unlikely, but we observed such

a pattern in real-world request races partly due to our inclusion of

request races on cache and shared data structures.

The effects of races. 47 out of the 104 studied request races on

databases can lead to duplicate data insertion. Among them, 31

result in database errors, and 16 result in application errors. The

majority of the remaining database races lead to inconsistent or

stale views. File races can lead to various errors, such as duplicate

file/directory creation or non-existing file/directory errors. File

races can also lead to data corruptions. All cache races lead to

inconsistent or stale views. Races on shared-memory data structures

can lead to various failures and errors. They can also lead to requests

never be responded to, and such effects are not observed on races on

other resources. For some of these races, the failure effects are easy

to detect, such as those resulting in explicit errors. For others that

1Each pattern has four or three operations. The first and third operations are from one
request. The second and fourth, which are marked ‘′’, are from the second request. If
one operation has multiple possibilities, they will be put inside ł()ž and separated by
‘ |’. 𝐴 stands for append operations, which include database insert, file append, file/dir
create, and cache add; 𝐷 stands for delete operations, which include database delete,
file/dir delete, and cache delete; 𝑅 stands for read operations, which include database
select, file/dir read, cache read;𝑊 stands for write operations, which include database
update, file overwrite, and cache set or replace; and 𝜖 stands for NULL operations.

lead to inconsistent views or data corruptions on shared resources,

some types of checkers taking application semantics into account

are needed to catch the effects.

Among the 91 races on two instances of the same request handler,

63 of them are racing on databases. Further, the aforementioned

47 races leading to duplicate data insertion with either database or

application errors are all among these 63 and can manifest with

two instances of the same request handler. These numbers suggest

that we can use an effect-oriented approach [37, 77, 78] to find a

large portion of database races between two instances of the same

request handler by focusing on detecting request races with the

duplicate data-insertion effect.

Fix strategies. 21 out of the 137 studied atomicity violations

are fixed using database locks, transactions, file locks, or language-

provided locks to provide atomicity. The patches for the majority of

remaining atomicity violations involve design or application-logic

changes. These results are consistent with the conventional wisdom

that there are few synchronization operations to use on the server

side, and thus some design or logic changes are often needed to fix

request races. For order violations, using callback functions and

changing application logic are the two major fix strategies.

One interesting finding on fix strategies is that four server-side

request races are fixed by changes in client-side code, such as dis-

abling a button on the client side if the browser has not yet received

the response for an earlier request, which was sent by clicking the

same button, to avoid two concurrent instances of the same request.

Dependency on external factors and discussion. In our study,

we paid attention to several external factors, including web-server

configuration, database configuration, and development languages

and frameworks, and studied the impact of these external factors.

Some web servers, e.g., Apache HTTPD, commonly provide dif-

ferentmulti-processingmodules, i.e., prefork, worker, and event [10],

while web applications built on top of the Node.js framework use

the event-based model. In our study, we did not find the underlying

multi-processing model affect the way how we define server-side

request races, i.e., the studied races are on request handlers upon

receiving HTTP requests. Such a definition abstracts away whether

a request is served by a process or thread and whether a request is

served with an event-based model. On the other hand, we found

request races whose manifestation condition depends on database

configuration. For example, the MyISAM storage engine in MySQL

does not support transactions [11], and we have seen MediaWiki

races that are caused by the use of transactions, which onlymanifest

if MyISAM but not InnoDB is used in MySQL.

In terms of the dependency on development languages and frame-

works, built-in support for asynchronous execution couldmakeweb

applications more prone to order violations as we discussed earlier.

We also note that non-ORM, non-Node.js web application has the

least number of races racing on shared-memory data structure, as

their development languages provide little support for shared mem-

ory natively. On the other hand, some other number differences

may not be depending on language/framework. No Node.js request

races are on file or cache, which is probably due to the smaller total

number of request races being studied. Also, the differences on the

total numbers of request races we studied in different types of web

applications, i.e., we study the largest number of request races in

non-ORM, non-Node.js web applications and the smallest number
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Figure 2: The architecture of ReqRacer

in Node.js web applications, are more related to the development

history length of web applications being studied.

Although we included some bugs from Node.js-based web appli-

cations, which were studied in earlier studies [31, 72], our focus is

different, as we specifically focus on web applications but their stud-

ies include other types of applications built on top of Node.js, e.g.,

middleware and desktop applications. Due to this difference, our

characteristic study is essentially targeting a different subject. More-

over, our study includes 146 more request races from non-Node.js

web applications, which allows us to both find characteristics that

are common to all types of web applications and to understand the

impact of development language/framework differences.

3 SERVER-SIDE REQUEST-RACE DETECTION

Based on our characteristic-study results, we design a dynamic

framework, ReqRacer, to detect and expose server-side request

races that manifest as atomicity violations. Figure 2 illustrates the

architecture of ReqRacer, and it has three major stages. The first

stage records four types of runtime information, and they are used

for determining shared-resource accesses, reasoning about depen-

dencies between requests, and enabling execution replay. The sec-

ond stage consumes the traces recorded during the first stage and in-

fers potential unserializable interleavings to detect racing requests.

The last stage replays the recorded traces, tries to enforce the unse-

rializable interleavings inferred by the second stage, and observes

their effects. Racing requests with triggered harmful unserializable

interleavings will be reported.

3.1 Illustrating Example

The key contribution of ReqRacer is to model happens-before

relationships essential to HTTP requests in web applications with

a novel form of dependency graphs, so that the well-established

tracing-inference-validation architecture can be applied to detect

request races.

We will use WordPress 11073 to illustrate the dependency-graph

construction process shown in Figure 3. The request race is between

adding a comment for a post and trashing the post. While trashing

a post in one request, the IDs and current statuses of its comments

are first backed up for possible future restoration, and then the

statuses of all existing comments will be marked as trashed. In

between these two steps, another concurrent request can add a

new comment to the post being trashed. Under this situation, the

comment is first successfully added to the post and displayed to

Req14: GET trash page
Req15: POST to trash
Req16: GET the redirected page

Req2: GET add_post page
Req3: Ajax POST autosave
Req4: Ajax GET permeant link
Req5: Ajax GET token update
Req6: Ajax POST autosave
Req7: POST to publish
Req8: GET the redirected page

Req17: GET untrash page
Req18: POST to untrash
Req19: GET the redirected page

Req10: GET comment page
Req11: POST to submit
Req12: GET the redirected page

Req1: GET admin page

Grp1

1

2

3

Req9: GET site home page

Req13: GET admin page

Grp2. Add a new post

Grp3. Go to site home

Grp4. Add a comment

Grp5. Go to admin page

Grp6. Trash the post

Grp7. Untrash the post

Grp3

Grp2

Grp5

Grp4

Grp6

Grp7

Grp1. Go to admin page

Figure 3: An example of dependency-graph construction

the user, and it is then marked as trashed since the post is being

trashed. However, the new comment is not backed up, and this

comment cannot be restored if the post is untrashed later. The user

who added the new comment will observe inconsistent views, as

the comment was first added successfully, but later the comment

will be gone if the user refreshes the post that just went through

the trash and untrash process.

Now assuming a developer is doing some testing for WordPress.

In a browser, the developer first goes to the admin page and adds

a new post, then goes to site home and adds a comment for the

newly added post, and finally goes back to the admin page to trash

and then untrash the post. In this sequence, the harmful race is not

triggered. During this process, ReqRacer records a sequential trace

as shown in 1○, and it then constructs the dependency graph as

shown in 3○. Note that the boxes surrounding the recorded requests

in 1○ are added for illustration purposes but not part of the trace.

With these recorded requests, one extreme is to consider all

recorded requests as totally ordered, under which case we will

not be able to infer any potential races. The other extreme is to

consider that all requests can potentially be sent concurrently via

different browsers or tabs, under which we will be inferring too

many false positives. Therefore, we only relax orders between truly

independent requests but preserve orders that, once relaxed, can

disable subsequent requests and lead to replay divergences. In Fig-

ure 3, ReqRacer will go through 1○→ 2○→ 3○ to find potentially

concurrent requests from the sequence of recorded requests.

From 1○ to 2○, ReqRacer groups requests that have a Request-

Response-Request (RRR) dependency, i.e., one request can only be

sent after the response of the previous request has been received

by the client. Such an RRR dependency can be established in three

ways in Figure 3. First, a POST request could depend on the previ-

ous GET request, and this applies to Req2→Req7, Req10→Req11,

Req14→Req15, and Req17→Req18. Second, a GET request to a

redirected page depends on the previous request, and this applies

to Req7→Req8, Req11→Req12, Req15→Req16, and Req18→Req19.

Third, Ajax requests depend on the previous GET request, and this
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applies to Req2→{Req3, Req4, Req5, Req6}. Grouping requests with

dependencies together, we get a total of seven groups shown in

Figure 3. 2○. ReqRacer recognizes these RRR dependencies through

programmodifications to embed tokens into requests and responses.

Note that the text description in Figure 3. 2○ is just added to ease

understanding but not inferred by ReqRacer.

From 2○ to 3○, ReqRacer adds an edge between two request

groups if there is a special type of data dependencies between them,

i.e., when a request issues a SELECT query with a primary key, and

the database returns a single row that was inserted by a query from

an earlier request. We name it as Select-by-Primary-Key (SPK) data

dependency. The rationale is that if one considers two requests

with an SPK-data dependency as concurrent and forcefully send the

latter request before receiving the response of the former request,

the SELECT query in the latter request will return zero rows, which

could significantly affect the execution of the corresponding request

handler compared with the recorded run where it gets one row, and

it will result in a replay divergence.

For example, the SPK-data-dependency edge from Grp2 to Grp4

in Figure 3. 3○ is added because one query sent to database while

handling Req10 queries a singleton of result specifiedwith a primary

key that was inserted by Req7. As it is a singleton inserted by Req7,

Req10 will get a NULL result if we relax the order between Req7 and

Req10, which can significantly affect the request handlers handling

Req10 and other requests following it in the same group. As a result,

we will not be able to add comments to the post in Grp4 if the post

has not been added in Grp2 yet. The other SPK-data-dependency

edge is added for a similar reason. ReqRacer recognizes such data

dependencies by recording database queries and selected responses.

Note that our SPK-data-dependency is different from general

data dependencywhere a latter query reads data inserted or updated

by an earlier query. This is because the effect of changing the order

of two queries with the general data dependency highly depends

on the business logic of the corresponding request handlers and

can only be observed during replay runs in general. However, if the

SELECT query specifies a primary key, the corresponding request

handler will have significantly different business logic for cases

where the query gets one row or gets no row, and we can infer that

there will be replay divergences if the order is not enforced.

With the dependency graph in Figure 3. 3○ and recorded traces

on accesses to shared system resources, two requests are potentially

concurrent if they are in different request groups that are not reach-

able on the dependency graph. In Figure 3, ReqRacer determines

that Grp4 and Grp6 are potentially concurrent, and they contain

Req11 and Req15, which are the racing requests in WordPress 11073.

After inferring concurrent requests, ReqRacer further checks un-

serializable interleavings and validates them, and the race between

Req11 and Req15 will be reported as a true, harmful request race.

3.2 Tracing and Request-Race Inference

ReqRacer employs server-only tracing but requires no modifica-

tions on the client side, making it easy to deploy and broadly appli-

cable. In particular, ReqRacer records (1) HTTP requests received

by the HTTP server, (2) accesses to shared resources including

database queries and calls to cache APIs, (3) the return value of

functions that are used to get the primary key of the row inserted

by a previous INSERT query, and (4) unique tokens generated while

formulating HTTP responses. Shared-resource accesses and tokens

are attributed to the request that initiates them.

With dynamic execution traces, ReqRacer first identifies con-

flicting requests, i.e., a pair of requests whose request handlers both

access some shared resource in common and at least one request

handler performs logical append, delete, or write operations to the

resource. ReqRacer then builds a dependency graph as illustrated

in Figure 3, and two request handlers that are in different groups

and not reachable from each other are considered as concurrent.

Finally, ReqRacer reports two conflicting and concurrent request

handlers as racing if the two request handlers can exhibit unserial-

izable interleavings of shared-resource accesses. Below, we describe

each of these three steps, including what information is traced and

how the traced information is analyzed.

While our framework can be used for all types of racing resources

that we have seen in our study, our prototype implementation of Re-

qRacer handles databases and cache. To extend ReqRacer for files,

one needs to incorporate techniques of tracing and analyzing file

accesses previously used for process races [46, 47] into our frame-

work. To extend ReqRacer for shared-memory data structures, one

needs to further trace and analyze shared-memory accesses. In

both cases, happens-before relationships modeled by ReqRacer’s

dependency graphs could be reused.

3.2.1 Identifying Conflicting Requests. ReqRacer considers two re-

quests as conflicting if their corresponding request handlers contain

conflicting accesses to either databases or cache.

On database queries, ReqRacer currently logs SELECT, INSERT,

UPDATE, andDELETE. For SELECT, UPDATE, andDELETE queries,

we determine the rows of data elements being accessed based on the

WHERE clause. An INSERT query adds a new row to a table with

the value of each column specified. We extract the column-value

pairs from an INSERT query string. These four types of queries are

sufficient in our evaluation, and more can be added if necessary.

For two INSERT queries, if they operate on the same unique

key, and the values inserted to the unique key are the same, these

two INSERT queries are conflicting. Otherwise, if no unique key

appears in an INSERT query string, ReqRacer currently considers

two INSERT queries conflicting if they insert the same data.

To find conflicts between a query with a WHERE clause and an

INSERT query, we compare the WHERE-clause conditions with the

column-value pairs from the INSERT query. If the column-value

pairs satisfy the conditions, the two queries are conflicting.

To find two conflicting queries both with a WHERE clause, we

compare their conditions. If there is some intersection, we conser-

vatively consider these two queries as conflicting.

One special case is a SELECT * query without a WHERE clause.

For this type of SELECT query, we consider it as accessing the

whole table and conflicting with any query that modifies the table.

On cache accesses, ReqRacer currently logs Add, Delete, Get,

Set, and Replace operations. Two cache accesses are conflicting if

they have the same key and at least one of them is an Add, Delete,

Set, or Replace operation.

3.2.2 Dependency-GraphConstruction. As illustrated in Section 3.1,

ReqRacer constructs the dependency graph in two steps.
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To model the RRR dependency between two requests, where

the second request can only be sent after the response of the first

request has been received by the client, we modify the web ap-

plication to include a random token unique to each request when

formulating responses to the client, and it leverages the request-

response-request chain established by the random token embedded

in responses to capture RRR dependencies.

There are four scenarios where this token is embedded. For forms

in HTML responses, we add a new hidden field to the forms with

the token value. For embedded URLs in HTML responses, we add

the token as a URL parameter. For HTTP redirection responses, we

also add a URL parameter to the response URL. In these three cases,

later requests sent through the token-embedded HTML elements or

URLs will automatically carry the random token. For all HTML page

responses that could enable Ajax requests, we add the token value

as a meta property under the head tag of the response HTML and

registers a new function with jQuery’s ajaxPrefilter interface, where

the function will read and attach the token value to all Ajax requests

sent from this page. To avoid potential client-side races on these

token values, the random token value is always parsed and loaded

as part of the response before subsequent requests that need to carry

the token value can be sent. Note that similar mechanisms are used

to implement Cross-Site Request Forgery (CSRF) tokens [2]. While

CSRF token is unique for every web session, our new token will be

unique for every response. Our implementation leverages existing

CSRF-token code to embed our new token for RRR dependency.

With these modifications, ReqRacer can establish a request-

response-request chain and add an RRR-dependency edge between

two requests, when the second request contains a token value

that matches the token value embedded into the response of the

first request. After identifying pair-wise dependencies based on

tokens, these requests are further grouped until no two requests

from different groups have an RRR dependency.

After grouping requests based on RRR dependencies, ReqRacer

next adds edges between request groups with SPK-data dependen-

cies, which happens when one SELECT query with a primary key

specified in the second group gets one row inserted by a query in

the first group. Specifically, if (1) a request rqAi in request group

GrpA contains an INSERT query and the newly inserted row has

value 𝑣 on a primary key column ColP, (2) a request rqBj in a dif-

ferent request group GrpB which contains a SELECT query with a

WHERE clause ColP= 𝑣 , and (3) GrpA appears before GrpB in the

trace, ReqRacer adds an SPK-data dependency edge from GrpA to

GrpB. Note that requests after rqAi in GrpA will still be considered

as potentially concurrent with requests in GrpB and will be checked

by ReqRacer.

We do not add data-related dependency edges on cache, as a

request handler will usually bring the data into cache by itself in

cases of cache misses without relying on other request handlers to

bring the data in.

3.2.3 Request-Race Inference. ReqRacer currently focuses on de-

tecting request races with atomicity violations as their root causes.

With the dependency graph constructed, ReqRacer then checks

whether two conflicting, concurrent request handlers have shared-

resource accesses that can exhibit unserializable interleavings with

the patterns shown in Table 3. ReqRacer identifies potential request

races for validation if unserializable patterns are found.

To detect races between two requests that will be served by two

instances of the same request handler, ReqRacer duplicates the

selected request handler, considers the original request handler and

the duplicated request handler as concurrent, and applies the same

checking of unserializable interleavings. The duplicated request

handler will only be checked against its origin but not other request

handlers. We further follow the effect-oriented approach [37, 77, 78]

to handle the majority of races between two instances of the same

request handler as discussed in Section 2.2, i.e., we focus on finding

duplicate data-insertion races by duplicating a request only if the

corresponding request handler issues one SELECT query and one

INSERT query that are conflicting.

3.3 Replay-Based Validation

While the RRR and SPK-data edges help to reduce the number of

false positives to be pruned by the validation stage, replay is still

necessary to validate the remaining request races by observing

the effect of enforcing specific interleavings to determine whether

they lead to errors or replay divergences. ReqRacer reports a true,

harmful request race only if it detects failures.

In the replay stage, ReqRacer replays recorded requests and

intercepts their responses. In one replay session, ReqRacer replays

requests until reaching one request in the request race to validate.

While this replay session is paused before the first racing request,

ReqRacer replays the other racing request in a different replay

session, and all requests that the second racing request has general

data dependence, as defined in Section 3.1, on but have not been

replayed will be replayed in the order they appear in the trace.

To validate duplicated instances of the same request handler, we

simply replay the same request twice.

With both replay sessions pausing before racing requests, Re-

qRacer controls the execution of the racing request handlers to

make shared-resource accesses follow the order of unserializable

interleavings. To achieve this, we insert delays in the database

execution engine and cache-access APIs to control the order of

accesses to databases and cache. As not all interleavings are feasible

to enforce, ReqRacer gives up an interleaving if one access has

been waiting for a pre-defined timeout value but it is not the access

to proceed according to the interleaving to enforce. ReqRacer cur-

rently sets the timeout value to 10 seconds. ReqRacer also gives

up an interleaving if a response indicates an error and reports

the request race as a true positive. If an interleaving is success-

fully enforced, ReqRacer will detect failures by checking whether

there are application errors, database errors, or errors emitted by

programmer-supplied application-specific checkers. If a failure is

detected, ReqRacer reports the request race as a true positive. In all

other cases, the inferred request race is pruned as a false positive.

To enable replay-based validation, we need to create backups for

persistent system resources so that they can be restored onto the

replay systems. For database states, ReqRacer uses the backup and

restore functionality provided by databases. As cache is less per-

sistent, cache state is not backed up for restore, and it is populated

during replay based on database states.
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Table 4: Overall evaluation results. łReqsž shows the number of requests in the workload. ł#Acc.ž represents the number of

database or cache accesses in the trace. łConfl. Reqsž shows the number of conflicting request pairs. łRRRž, łSPKž, łSž, and

łRž show the numbers of conflicting request pairs pruned by checking RRR dependency, SPK-data dependency, serializability,

and replay, respectively. łTPž and łFPž show the numbers of true positives and false positives. łLikely TPž is for cases that can

be detected if application-specific checkers are added. Numbers with an ‘*’ are unknown to us while devising the workload.

Bug information Between distinct request handlers
Between two instances of
the same request handler

Bug ID
Racing
resource

Reqs #Acc.
Confl.
Reqs

RRR SPK S R TP
Likely
TP

FP
Confl.
Reqs

S R TP
Likely
TP

FP

WP 11073 Database 24 533 118 -22 -15 -74 -6 1 0 0 3 0 -2 0 1* 0
WP 11437 Database 9 181 26 -10 -2 -11 -2 0 1* 0 1 0 0 1 0 0
WP 24933 Database 15 277 18 -3 -8 -6 0 1 0 0 2 0 -2 0 0 0
MW 40594 Database 18 1008 14 0 0 -14 0 0 0 0 1 0 0 1 0 0
MW 69815 Database 23 2069 11 0 0 -11 0 0 0 0 1 0 0 1 0 0
MDL 28949 Database 47 2878 407 -37 -51 -297 -17 1 4* 0 11 0 -4 2/4* 1* 0
MDL 43421 Database 31 1141 122 -11 -48 -44 -18 0 1* 0 5 0 -1 1/1* 1* 1
MDL 51707 Database 14 250 21 -4 0 -16 0 1 0 0 3 -3 0 0 0 0
MDL 59854 Database 101 1969 492 -25 -81 -375 -10 0 1* 0 20 -12 -2 2/3* 1* 0
DPL 1484216 Database 11 422 6 0 0 -3 -3 0 0 0 1 0 0 1 0 0
WP 15545 Cache 23 412 24 -2 0 -22 0 0 0 0 2 0 0 1 1* 0
WP 20786 Cache & Database 14 263 10 -2 0 -7 0 1 0 0 9 -7 -2 0 0 0

4 IMPLEMENTATION AND EVALUATION

We implemented a ReqRacer prototype for the popular LAMP

stack, i.e., Linux, Apache, MySQL, and PHP. The prototype con-

sists of components for server-side tracing and replay-based val-

idation, which is implemented by modifying PHP, MySQL, and

application-specific cache APIs. The inference step is implemented

using Python. We use an open-source tool, Gor [7], to capture and

replay HTTP requests. To enable token-based dependency tracking,

we currently manually modify the applications to embed the tokens

leveraging existing CSRF token sites. To embed tokens, we first

determine the names of CSRF tokens used by an application. In

our experiments, we can get the names effectively by checking the

hidden-field names in HTML responses through a browser. Once

we get the names of CSRF tokens, we search the application code

to find the sites where such CSRF tokens are embedded. We finally

embed and log our tokens at these sites following the rule of how

CSRF tokens are embedded in the application.

We do not automate cache-API changes and token embedding, as

they are application-specific. Fortunately, our experience suggests

that places where we made changes are well modularized, and

we expect the workload of porting ReqRacer to new applications

under the LAMP stack to be small.

To evaluate the effectiveness and efficiency of ReqRacer in

detecting request races, we mimic the way how developers may

test their web applications, i.e., by clicking buttons on the browser to

visit various pages and use various functionalities, and we leverage

known real-world bugs to devise bug-triggering workloads. Among

all the bugs we have investigated in the characteristic study, we

are currently able to reproduce a total number of 12 bugs from

WordPress, MediaWiki, Moodle, and Drupal, and we used all these

12 real-world bugs to evaluate ReqRacer, covering all the four PHP

web applications we studied. Based on these 12 bugs, we devise a

workload that visits all the pages involved in each bug. Note that

the workloads we come up with just visit all the pages one-by-one

but not concurrently, and the races are not triggered in the recorded

runs with limited concurrency. We also visit some pages that are

not essential to the bug in our devised testing workloads.

All our experiments were conducted on a machine with an Intel

Core i7-4790 CPU and 16GB memory. The software versions are

Apache HTTPD 2.4.93, MySQL 5.6.44, and PHP 5.6.40. Cache is set

up according to the requirement of each individual case, and we

install the cache component only while evaluating with workloads

for WP 15545 and WP 20786.

4.1 Effectiveness Results

Table 4 summarizes the race detection results. Note that a request

race could manifest under different workloads, and we are reporting

the numbers of unique request races. In total, ReqRacer detects

and exposes 17 unique request races that are true and harmful,

including 13 unique request races that can explain the 12 known

bugs and four unique request races that are previously unknown

to us while devising the workloads. ReqRacer also detects eight

unique request races that are likely true with application-specific

checkers added. As discussed in Section 2.2, the effects of request

races that lead to inconsistent views or data corruptions can only

be caught with some types of checkers taking application seman-

tics into account. To catch these request races, we came up with

applicable-specific checkers based on our understanding of applica-

tions while manually checking false positives.

For request races between distinct request handlers, Table 4

shows the numbers of conflicting request pairs and false positives

pruned by different strategies. The numbers show that after pruning

false positives by RRR dependency, SPK-data dependency, and seri-

alizability inference, the majority of false positives are pruned. This

shows that these three strategies combined are very effective. The

remaining false positives are due to either our conservative anal-

ysis on WHERE clauses or failure-free executions after enforcing

alternative interleavings, and they are pruned by replay.

For request races between two duplicated instances of a request

handler with conflicting SELECT and INSERT queries, two-thirds

of the false positives are pruned by serializability checking, and

the remainings are pruned by replay. For false positives pruned by

replay, there is no application error or database error upon duplicate

data insertion. Our evaluation results show that the effect-oriented
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approach can effectively find request races between two instances

of the same request handler.

We identified likely new bugs, which require application-specific

checkers, by checking all the request races pruned by replay and

adding application-specific checkers designed based on studied

request races resulting in inconsistent and stale views. For example,

we added checkers to disallow duplicate comments in WordPress

and disallow duplicate class-name aliases in Moodle.

For new bugs and likely new bugs, we have verified that they still

exist in the latest version, and we are in the process of reporting and

confirming with developers. So far, two bugs have been confirmed,

including one that requires an application-specific checker, and

others are waiting for responses from developers.

Manual checking of all the request races reported by ReqRacer

revealed one false positive, i.e., although we are able to trigger an

error under the workload for MDL 43421 by duplicating a request,

it is not feasible in practice as the client side will disable the button

while waiting for the response. We leave it for future work to

address this limitation by incorporating more client-side analysis.

4.2 Efficiency Results

We evaluated the overhead of ReqRacer’s recording step by mea-

suring the time between sending a request to and receiving the

response from the server, and the overhead is between 2% to 6%.

Note that our numbers were measured with both the server and

client on the same machine, and we expect the overhead to be

smaller in a real-world deployment setting after including network

latencies. In our evaluation, the inference step can finish within

seconds, and the validation time varies from seconds to several

minutes depending on the number of unserializable interleaving to

prune. On the other hand, if a developer were to manually conduct

stress testing by repeating the sequential workload many times, the

bugs are unlikely to be triggered. Even if a bug is triggered once,

it is difficult for the developer to know exactly how to trigger it,

while ReqRacer can reliably trigger a bug once it is detected.

5 THREATS TO VALIDITY

Characteristics studies are subject to validity problems, and our

characteristic-study results need to be taken with the methodology

and our selection of web applications in mind. One threat is the

likely lack of representativeness of the studied applications and

request races. To minimize this threat, we choose popular open-

source web applications with a significant user base. Our choice

of applications also covers several popular development languages

and framework for the server side. The other threat is related to

the manual inspection of bug reports. To alleviate this threat, two

authors first independently study the collected bugs by thoroughly

investigating the resources that are available to us. Once they finish,

they cross-check their results and draw a conclusion.

The evaluation of ReqRacer is also subject to validity problems.

One threat is the correctness of the implementation and the repre-

sentativeness of bugs used for evaluation. To minimize this threat,

we use all known bugs that we can reproduce from all four PHPweb

applications included in our study. Another threat is the validity

of the newly detected bugs by ReqRacer. We mitigate this threat

by reporting newly discovered bugs to developers, and two previ-

ously unknown bugs, one of which requires an application-specific

checker, have been confirmed. Regarding the general applicability

of our proposed technique, our current implementation only han-

dles web applications built on top of LAMP. During our evaluation,

ReqRacerwas implemented before we reproduced any Moodle and

Drupal bugs, and our experience suggests that porting ReqRacer

to new LAMP applications will be small. We also believe that our

key contributions on modeling happens-before relationships could

also apply to other types of web applications, e.g., ORM-based and

Node.js-based, and we will leave it for future work.

6 RELATED WORK

Section 1 discussed some related work on several different types

of races. We next discuss other related work. Server-side web ap-

plications have been the subject of a lot of existing research, and

many different techniques have been proposed for improving their

reliability [19, 22, 32, 59, 60, 66, 75], but none of them handles

the concurrency aspect. Some of these existing techniques handle

the input generation problem, and ReqRacer complements these

techniques by solving the buggy-interleaving exposing problem.

Techniques focusing on the security aspect of web applications

have been proposed, e.g., auditing [44, 70], intrusion detection and

recovery [27, 28], and identifying information disclosure [29]. Races

are considered severe security vulnerabilities [17], and they can

enable concurrency attacks [79]. Our proposed techniques can also

help improve the security aspect of web applications by detecting

and exposing races.

Similar to detecting client-side races and Node.js races, tech-

niques developed for Android applications also focus on the event-

driven nature of the mobile platform [23, 37, 38, 57, 65]. Some

Android applications also have a client-server structure, and tech-

niques developed in this paper could also be leveraged to handle

races in their server-side applications.

7 CONCLUSION

We present the first, to the best of our knowledge, comprehensive

characteristic study of real-world server-side request races in web

applications. Our results show that request races are indeed under-

studied and need more research attention. We expect that future

research can follow our study results to provide comprehensive

support in combating request races. Guided by these results, we

develop ReqRacer, a framework for detecting and exposing re-

quest races. Our evaluation shows the effectiveness and efficiency

of ReqRacer. Future work can adapt ReqRacer for other types of

web applications, repurpose it for production-run deployment, or

pursue client/server combined approaches for in-house testing.
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