
https://doi.org/10.1007/s10664-020-09862-3

BARRIERFINDER: recognizing ad hoc barriers

TaoWang1 ·Xiao Yu1 ·Zhengyi Qiu1 ·Guoliang Jin1 · Frank Mueller1

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Ad hoc synchronizations are pervasive inmulti-threaded programs. Due to their diversity and
complexity, understanding the enforced synchronization relationships of ad hoc synchroniza-
tions is challenging but crucial to multi-threaded program development and maintenance.
Existing techniques can partially detect primitive ad hoc synchronizations, but they cannot
recognize complete implementations or infer the enforced synchronization relationships. In
this paper, we propose a framework to automatically identify complex ad hoc synchroniza-
tions in full and infer their synchronization relationships. We instantiate the framework with
a tool called BARRIERFINDER, which features various techniques, including program slic-
ing and bounded symbolic execution, to efficiently explore the interleaving space of ad
hoc synchronizations within multi-threaded programs and collect execution traces. BARRI-
ERFINDER then uses these traces to characterize ad hoc synchronizations into different types
with a focus on recognizing barriers. Our evaluation shows that BARRIERFINDER is both
effective and efficient in doing this, and BARRIERFINDER is also helpful for programmers
to understand the correctness of their implemented ad hoc synchronizations.

Keywords Ad hoc synchronizations · Barriers · Program slicing · Symbolic execution ·
Temporal invariants

1 Introduction

1.1 Motivation

In the current multi-core era (Herb 2005; Sutter and Larus 2005), multi-threaded program-
ming has become imperative to leverage the full power of modern CPUs. As multi-threaded

Communicated by: Martin Monperrus

This work was supported in part by the following grants: Air Force Office of Scientific Research
AFOSR-FA9550-12-1-0442 and AFOSR-FA9550-17-1-0205, NSF 1217748 and 1525609, DOE
1403482, Lawrence Livermore National Laboratory subcontracts LLNL-B627261 and LLNL-B631308.

� Guoliang Jin
guoliang jin@ncsu.edu

� Frank Mueller
mueller@cs.ncsu.edu

Extended author information available on the last page of the article.

Empirical Software Engineering (2020) 25:4676–4706

Published online: 1 September 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-020-09862-3&domain=pdf
http://orcid.org/0000-0002-0258-0294


programs share resources across threads, programmers rely on proper synchronizations to
ensure program correctness and efficiency. While a common set of standard synchroniza-
tions, such as mutex and condition variable operations, are provided by different languages
or libraries, a recent study (Xiong et al. 2010) finds that programmers frequently choose
not to use these standard synchronizations but implement their own ad hoc synchroniza-
tions for functionality or performance reasons. Researchers were able to find 6 to 83 ad hoc
synchronizations in each of the 12 studied program suites (Xiong et al. 2010).

Because of the critical role that synchronizations play in multi-threaded programs, it
is important to have an accurate understanding of the semantics of synchronizations and
their enforced synchronization relationships. While standard synchronizations are easy to
recognize and understand, ad hoc synchronizations have unmodularized implementations
and enforce diverse synchronization relationships, making synchronization understanding a
challenging task.

Figure 1 shows an example to illustrate the basic concepts of ad hoc synchronizations.
The ad hoc synchronization in Fig. 1 is formed by statements S2 and S3, where the shared
variable flag is called a sync variable, the while loop in S3 is a sync loop, S2 is a sync
write, and the sync loop and sync write compose a sync pair. In this illustrating example,
the sync pair formed by S2 and S3 enforces an order relationship between S1 and S4 that S1
happens before S4.

To detect ad hoc synchronizations, researchers have already proposed various tech-
niques (Jannesari and Tichy 2010, 2014; Tian et al. 2008, 2009; Xiong et al. 2010; Yin
2013; Yuan et al. 2013). However, existing techniques only detect sync pairs, i.e., sync loops
and their corresponding writes, but they do not further infer synchronization relationships
being enforced. This is problematic, as a sync pair can implement a mutual-exclusion rela-
tionship or different types of order relationships. For example, Fig. 2 shows another ad hoc
synchronization with the sync pair in lines 23 and 28 labeled, but it implements a barrier.

Not only do programmers have difficulties in understanding the intended order relation-
ship by the sync pairs and verify their correctness (Gu et al. 2015), but also multi-threaded
program development tools, such as data-race detectors (Bessey et al. 2010; Lee et al. 2012),
concurrency-bug finding tools (Park et al. 2009; Zhang et al. 2010), automated bug-fixing
tools (Jin et al. 2011, 2012), synchronization determinism runtime (Zhao et al. 2019; Cui
et al. 2013), and synchronization-oriented performance profilers (Yu and Pradel 2016; Chen
and Stenstrom 2012), cannot directly use the ad hoc synchronization detection results of
these existing tools. For example, SyncFinder (Xiong et al. 2010), which is the state-of-
the-art tool for detecting ad hoc synchronizations, can detect the sync pair in Fig. 1, but it
does not determine the order relationship enforced by S2 and S3. As a result, race detectors
need to conduct further analysis on top of SyncFinder results. Otherwise, they could con-
clude that S1 and S4 constitute a data race on the shared variable counter, resulting in a
false positive. To determine the order relationship in Fig. 1, one could enumerate all possi-
ble interleavings and see the temporal invariant that S1 will always happen before S4. The

Fig. 1 An ad hoc synchronization example formed by S2 and S3. counter and flag are global variables.
flag is initialized to true

Empirical Software Engineering (2020) 25:4676–4706 4677



Fig. 2 Extracted code from SPLASH2 LU

order relationship in this particular case is not difficult to determine due to the simplicity of
this example.

However, inferring the synchronization relationship after detecting sync pairs is not
always as easy as the one in Fig. 1, and sometimes it can be very challenging. The ad hoc
barrier in Fig. 2 exemplifies the two major challenges:

– First, a sync pair, which is the only information reported by existing ad hoc syn-
chronization detectors, may be only a part of an ad hoc synchronization. Without
considering extra code, it may be impossible to infer the enforced synchronization rela-
tionship. For example, the sync pair in Fig. 2, which includes the sync write on line 23
and the sync loop on line 28, is only a portion of the complete ad hoc synchronization
implementing a barrier. To recognize the ad hoc barrier, all the code from line 12 to 29
needs to be considered, in addition to their threading context from line 3 to line 6. In
this example, the static control flow is already complex, and determining the threading
context involves non-trivial interprocedural analysis.

– Second, there can be an excessive number of feasible thread interleavings to consider
for inferring synchronization relationships and verifying their correctness. Although the
example in Fig. 1 has a small interleaving space and the synchronization relationship
can be inferred with ease, the example in Fig. 2 has a much larger interleaving space,

Empirical Software Engineering (2020) 25:4676–47064678



and the complexity of which will be detailed in Section 3.2. Without a thorough explo-
ration or a proof, one cannot be sure what synchronization relationship is enforced by
a sync pair and relevant code constructs or if the implementation is correct.

To sum up, understanding ad hoc synchronizations in terms of their semantics, i.e., the
synchronization relationships being enforced, and correctness is an important but challeng-
ing task that has not been addressed. Techniques to bridge the gap, anywhere between
existing ad hoc synchronization detection tools and various multi-threaded program devel-
opment tools, are in a great need to make the results from the former be more useful for the
latter.

1.2 Contribution

To tackle these challenges and bridge the gap, we propose an ad hoc synchronization anal-
ysis framework to (1) automatically recognize complex ad hoc synchronizations beyond
simple sync pairs, and (2) efficiently infer the enforced synchronization relationships by
exploring the interleaving space without repetitively examining equivalent interleavings. To
the best of our knowledge, no existing technique has accounted for such complexity in the
context of analyzing ad hoc synchronizations.

We currently instantiate the framework for automatic recognition of ad hoc barriers and
present BARRIERFINDER. We choose to focus on ad hoc barriers because they are both com-
mon and beneficial to be recognized. The ad hoc synchronization study (Xiong et al. 2010)
reported that barriers are a common type of synchronizations with ad hoc implementations.
Further, a recent work also shows that the recognition of barriers can reduce the complexity
of many multi-threaded program analyses and improve many development tools (Das et al.
2015).

Our approach capitalizes on the intuition that all ad hoc barriers enforce a temporal
invariant among different thread interleavings. Specifically, the temporal invariant involves
a blocking point and a releasing point, and no participating threads can proceed beyond the
blocking point before the last participant has reached the releasing point. As a result, com-
putation prior to the blocking point shall be finished in all threads before computation after
the blocking point can be executed in any thread.

As shown in Fig. 3, BARRIERFINDER takes program source code in C as inputs, which
will be annotated with sync pairs as detected by SyncFinder (Xiong et al. 2010). It proceeds
in three major steps to determine whether each sync pair and any relevant code compose an
ad hoc barrier:

1. To identify complete ad hoc synchronizations beyond sync pairs, we first perform
program slicing for the target program with the annotated sync pairs as the slicing
criteria. This helps us identify program constructs beyond sync pairs that are also

Middle endFront end

Symbolic execution with

three techniques: IR, IA, ET

Trace 

mining

Synchronization 

report

Back end

SyncFinder

results

Program

code

Inter-procedural slicer

Boundary analysis

Instrumentation

Fig. 3 The architecture of BARRIERFINDER. IR: interleaving reduction. IA: interleaving avoidance. ET:
early termination. Trace mining: find pre-defined trace patterns

Empirical Software Engineering (2020) 25:4676–4706 4679



integral parts of ad hoc barriers. We then analyze and instrument the program slices
with auxiliary APIs, such as scheduling and tracing APIs. These APIs are directives to
examine the temporal invariant of the sliced program constructs by efficient interleaving
enumeration.

2. With the sliced-and-instrumented program LLVM bitcode, we then symbolically exe-
cute the program to exhaustively enumerate nonequivalent interleavings and to generate
traces representing these interleavings. During symbolic execution, we bound the
execution context and design several techniques to make exhaustive interleaving enu-
meration feasible and more efficient. We develop a runtime system that interprets the
auxiliary APIs for efficient interleaving enumeration and trace generation.

3. Finally, we mine the interleaving traces to find predefined temporal patterns and infer
the synchronization relationship. Since BARRIERFINDER focuses on ad hoc barriers,
we define patterns for barriers. BARRIERFINDER reports whether a sync pair is part
of an ad hoc barrier. If that is the case, it reports the complete barrier implementation.
Otherwise, it reports the context of the violation.

Overall, this paper makes the following contributions:

– We propose a framework to infer the synchronization relationship enforced by
ad hoc synchronizations. To our knowledge, we are the first to analyze ad hoc
synchronizations beyond recognizing sync pairs.

– We instantiate our framework for ad hoc barriers and implement BARRIERFINDER

with several novel techniques to account for interleaving space blow-up and to
boost its execution efficiency.

– We evaluate BARRIERFINDER on both real-world programs and synthetic bench-
marks. Results suggest that our approach is efficient and effective in recognizing
different ad hoc synchronizations and can also help programmers understand the
correctness of ad hoc synchronizations.

– We demonstrate how BARRIERFINDER’s result can be further generalized to an
unlimited number of concurrent threads with a proof sketch.

In our current prototype implementation and evaluation, the input C programs have a main
thread that spawns several child threads. All threads participate in the same thread pool and
carry out the same computation. We further assume that the barriers are counter based and
every thread participates in them. Our evaluation shows that our prototype implementation
is effective and efficient for programs and ad hoc barriers matching these assumptions. A
short version of this work appears in the conference publication (Wang et al. 2019). This
journal version contributes the following major extensions:

1. Section 3 provides more details on the BARRIERFINDER design that were only partially
illustrated with an example in the conference version.

2. Techniques in Sections 3.2.3 and 3.2.4 are new, and they present novel solutions to
solve challenges introduced by loops. Section 4.3.2 shows the evaluation results for the
new techniques.

3. Section 4.4 is new, and it shows the effectiveness results of BARRIERFINDER on our
synthetic benchmark suite and demonstrates how it can differentiate correct barriers
from incorrect ones or non-barriers.

4. Section 4.5 is new, and it showcases a formal proof generalizing the characterization
of counter-based ad hoc barriers in a program, e.g., the one in Fig. 2, to any number of
participating threads in the program.

Empirical Software Engineering (2020) 25:4676–47064680



2 Example and Overview

Below, we first describe the real-world example in Fig. 2 with details, and we then use it to
illustrate the major steps of BARRIERFINDER, discuss the complexity of enumerating the
interleavings in the symbolic execution step, and show how BARRIERFINDER reduces the
complexity with different techniques and optimizations.

2.1 An Illustration of theMajor Steps

The code shown in Fig. 2 is extracted from a real-world program, SPLASH2 LU (Woo et al.
1995). Within the main function, the parent thread first creates P-1 child threads to execute
SlaveStart and then also executes SlaveStart. Within SlaveStart, a total of five
ad hoc barriers are used. Two of the five barriers are before the for loop in line 10, two in
the for loop, and one after the for loop. Fig. 2 shows the code for the first ad hoc barrier
in the for loop. The remaining barriers have the same code and are omitted.

For the ad hoc barrier from lines 12 to 29 in Fig. 2, SyncFinder (Xiong et al. 2010) can
only report a sync pair with a sync loop in line 28 and a sync write in line 23, not knowing
that they are parts of this barrier. BARRIERFINDER, as shown in Fig. 3, takes source code
and sync pairs reported by SyncFinder as input, and it then uses slicing to find more program
constructs related to synchronization. For the example in Fig. 2, we use the reported sync
write and sync loop in lines 23 and 28 as the slicing criteria, and we are able to retain the
entire code fragment from lines 13 to 28 after slicing.

To recognize ad hoc barriers in the sliced program, we rely on the temporal invariant
exhibited by a barrier. We argue that all barriers exhibit the same temporal invariant, regard-
less of whether they are standard ones provided by languages/libraries or ad hoc ones.
Specifically, if N threads in a program execute the barrier code, the first N −1 threads must
always be blocked until the N -th thread unblocks them. As a result, if we collect a tracing
event R immediately after the block operation in the N − 1 threads and a tracing event W

before the unblock operation in the N -th thread, then all traces of different interleavings
must share the same pattern WRN , i.e., a W (write) followed by N instances of Rs (reads).

Based on the observation above, our approach at a high level is to gather program exe-
cution traces and mine the characteristic temporal invariant to recognize ad hoc barriers. To
gather execution traces, BARRIERFINDER analyzes and instruments the program with trace
API calls that generate different outputs representing the execution of different operations.
In Fig. 2, BARRIERFINDER instruments a trace API call immediately before the sync write
and another one immediately after the sync loop, so that they are executed before the sync
write and after the sync loop, respectively.

With trace API calls instrumented in the sliced program, BARRIERFINDER uses a sym-
bolic execution engine to carefully schedule the program execution, so that equivalent
interleavings are not redundantly explored. We cannot simply run the sliced and instru-
mented program under a native environment to collect traces. That is because different
executions of the sliced program without explicit scheduling control in a native environ-
ment may only encounter a limited number of unique interleavings of the sync regions, and
any mined temporal invariant may just be false. To symbolically execute the sliced program
of the LU code shown in Fig. 2, we set the input variable P that determines the number
of threads to 2. For P greater than 2, symbolic execution may not be able to exhaustively
explore the interleaving space, and we provide an inductive proof in Section 4.5 with the
P=2 base as proved by BARRIERFINDER.

Empirical Software Engineering (2020) 25:4676–4706 4681



To guide the symbolic execution engine to explore unique interleavings, BARRI-
ERFINDER further instruments the sliced program with scheduling API calls. BARRI-
ERFINDER’s symbolic execution engine resembles a single-threaded machine and achieves
concurrency of a multi-threaded program by context switching among threads. The schedul-
ing directive forces the symbolic execution engine to explore different interleavings by
scheduling different threads. BARRIERFINDER only adds scheduling API calls after instruc-
tions that access shared variables, since they are the only program points where threads
may interact with one another. For our example in Fig. 2, we have three shared variables,
gsense, gcount, and P, with three, four, and one access(es), respectively. In particular,
three of the four accesses to gcount are within the CmpXchg function in line 18. After
instrumenting the trace and scheduling API calls, BARRIERFINDER collects traces corre-
sponding to different interleavings and then checks traces against a predefined invariant
representing barriers to recognize ad hoc barriers.

2.2 Complexity Analysis and Reduction

Our approach requires an efficient enumeration of thread interleavings. For N concurrent
threads each executing t instructions in a straight-line fashion, the combinatorial number
of sequentially consistent interleavings is (Nt)!

(t !)N . Such a large space presents a great chal-
lenge. Our solution entails both insights on this interleaving space and an ensemble of novel
engineering techniques to achieve high efficiency.

Given the exponential interleaving space, we can first bound N and t to reduce the com-
plexity. Nevertheless, exhaustive enumeration of all thread interleavings is still impractical.
To make it feasible, we design a series of techniques to reduce the upper bound of the pos-
sible interleavings and optimize the enumeration process, so that our approach becomes
feasible on complex multi-threaded programs. Next, we demonstrate these techniques on
our example.

2.2.1 Scheduling Scope Reduction

The scheduling scope is the subset of program source code where thread interleaving is enu-
merated. We introduce slicing-based scheduling scope reduction, which reduces the total
number of instructions to be executed in the target program by excluding instructions that
are not related to ad hoc synchronizations. We then heuristically partition the instructions
retained with slicing into code sections, which will be referred to as sync regions. We con-
sider a sync region as the basic program construct that may contain one high-level ad hoc
synchronization.

During interleaving enumeration, our approach uses all the sliced sync regions as the
scheduling scope instead of the entire program. As a result, the length of the program t in the
complexity upper bound is reduced to the length of the sync region c, where c is significantly
smaller than t in practice. If the number of threads in sync regions is sufficiently small, our
analysis may be able to exhaustively enumerate all possible interleavings in a reasonable
amount of time.

The LU code shown in Fig. 2 has five ad hoc barriers. One of them is fully shown in
lines 13 to 28, and four others are omitted in commented lines 9, 30, and 32. SyncFinder
reports a sync pair for each of these five barriers. After slicing with respect to these sync
pairs, lines 13 to 28 are retained after slicing. Since the program slice from lines 13 to 28 is

Empirical Software Engineering (2020) 25:4676–47064682



consecutive with no holes, our scheduling scope reduction technique uses lines 12 and 29
as the boundary to form the sync region for the barrier shown. Other barriers are handled
similarly.

2.2.2 Avoiding Equivalent Interleavings

After scheduling scope reduction, there are still other types of enumeration inefficien-
cies due to interleaving equivalence, namely, interleavings which have the same execution
context. Since a program’s behavior depends only on its current states not its histori-
cal schedulings or states, equivalent interleavings are guaranteed to produce the same
results in the future. To avoid enumerating equivalent interleavings, we use a context-based
equivalence testing technique to reduce all equivalent interleavings.

For consecutive sync regions, such as the two barriers omitted in line 9 in Fig. 2, we per-
form the testing at the ending boundary of each region. Assuming r consecutive sync regions
each with I interleavings, the complexity of naively enumerating all of them is O(I r) with-
out equivalence testing. With equivalence testing, only one interleaving will continue its
execution at the end of each sync region at best while all equivalent others are terminated,
and the complexity of exploring all of them is reduced to O(I ∗ r). We call this technique
interleaving reduction (IR).

For sync regions in loops, we can perform equivalence testing at the start of each region.
In this case, if a sync region has the same execution context as one recorded in previous
iterations, which we call a fixed-point interleaving, one can guarantee that the sync region
will expose the same behavior as before and thus interleaving enumeration can be avoided.
For the barriers in the for loop in Fig. 2, interleavings are only enumerated within a sync
region during the first loop iteration to record new interleavings, and the equivalence test
is performed before they are explored in later iterations. If found equivalent, interleav-
ing enumeration will be avoided. This observation is leveraged by techniques interleaving
avoidance (IA) and early termination (ET).

3 BARRIERFINDER Design

The key idea of BARRIERFINDER is to identify pre-defined trace patterns of ad hoc syn-
chronizations by exhaustive enumeration of thread interleavings. Therefore, transformations
employed by BARRIERFINDER, such as program slicing and instrumentation, must not
change the target program’s concurrency structure, i.e., cannot delete any existing synchro-
nizations, insert new ones, or change the code on which any synchronization has a control
dependency.

BARRIERFINDER employs various static and dynamic techniques to support efficient
interleaving space enumeration. As shown in Fig. 3, there are three pipelined steps in BAR-
RIERFINDER. The front end performs compile-time inter-procedural program slicing, sync
region boundary analysis, and instrumentation on program LLVM IRs. The middle end
symbolically executes the preprocessed program to collect sync traces with three critical
techniques to tackle the challenge of efficient interleaving enumeration. BARRIERFINDER’s
back end analyzes sync traces and reports synchronization relationships for sync regions and
their source code context information or the violation context. In this section, we elaborate
on its design considerations and discuss alternatives when applicable.

Empirical Software Engineering (2020) 25:4676–4706 4683



3.1 Front-end Analysis and Instruction

3.1.1 Interprocedural Slicing

BARRIERFINDER employs program slicing (Weiser 1981, 1984) with the objectives to (1)
reduce code size by elimination of irrelevant computations to achieve faster execution and
(2) preserve the execution context for sync regions. To recognize ad hoc barriers beyond
sync pairs, such as those in Fig. 2, any viable approach has to capture the execution context
of the sync region, including the initial values of sync variables, the number of participating
threads, and sync region boundaries. BARRIERFINDER uses sync loop and sync write as the
slicing criteria. Since the sliced program only provides interleavings allowed by the original
program while minimizing the size of the sliced programs, we can mine the temporal prop-
erty imposed by ad hoc synchronization via symbolically executing the sliced programs.
Meanwhile, computation code is irrelevant in general for inferring the semantics of ad hoc
synchronizations and may be sliced away to improve BARRIERFINDER’s efficiency.

BARRIERFINDER’s slicing step leverages LLVMSlicer (Slaby 2015), implementing
Anderson’s algorithm with field-sensitivity. We preserve program concurrency constructs
in two ways. First, the slicer leaves all well-defined sync constructs (e.g, Pthread API calls)
intact. Second, all potential accesses to sync variables are properly marked as sync writes
and reads in sync loops based on SyncFinder results. Since sync loops and sync writes,
which are the slicing criteria, correspond to reads and writes to shared memory locations
that threads synchronize with, concurrent events generated by the original program and its
sliced counterpart will be equivalent.

3.1.2 Sync Boundary Detection

Sync region boundary information marks the boundaries between computation and sync
regions. Such boundary information is critical to generating separable traces for consecutive
ad hoc synchronizations. Since there may be multiple ad hoc synchronizations in a program,
e.g., the LU code in Fig. 2 has five barriers, BARRIERFINDER needs sync region bound-
ary information to instrument trace separators, which are characters used to distinguish
consecutive synchronizations during the trace analysis stage.

A natural boundary is the first instruction sliced away with respect to the slicing criteria,
and indicates the ending point of computation code prior to a sync region. To detect bound-
aries, BARRIERFINDER relies on a heuristic based on the observation that a sync region
tends to have data dependencies only on sync variables, which are global or on the heap.
BARRIERFINDER realizes this heuristic in a classical backward data flow analysis algo-
rithm. This algorithm identifies (1) the first instruction accessing a sync variable as the start
of a region and (2) the first instruction in the immediate post-dominator of a sync loop as
the ending boundary. The algorithm in Fig. 4 utilizes classical backward data flow analysis.
Gen/Kill sets are computed implicitly for each instruction traversed. For example, the load
access of a global variable into a local variable would kill the local variable, and record the
address of global variable as a live variable. In/Out sets are computed for the ending and
beginning instruction of the analyzed basic block, respectively. The meet/join operator is
the set union of the successors’ Out sets. To account for the existence of loops, a fixed-point
algorithm is applied. The algorithm terminates when the set of local variables is empty for
the current instruction (line 14 in Fig. 4).

Empirical Software Engineering (2020) 25:4676–47064684



Fig. 4 Sync boundary detection algorithm

3.1.3 Trace API Instrumentation

After detecting the boundary of a sync code region, BARRIERFINDER’s front end instru-
ments the region with trace API calls to collect traces during symbolic execution in the
middle end. There are several considerations while deciding where to instrument trace API
calls. First, we have to distinguish sync writes and sync loops by different tracing events.
Second, we want to insert a minimal but sufficient number of trace API calls. Since trace
generation is interpreted in BARRIERFINDER, it is necessary to minimize its performance
overhead. Moreover, if too many runtime events are traced, temporal-invariant mining
would suffer from unnecessary overhead. BARRIERFINDER relies on the following rules to
satisfy these constraints:

Rule 1 Insert a trace API call that generates a character ‘R’ right after a sync loop.
Rule 2 Insert a trace API call that generates a character ‘W’ right before a sync write.
Rule 3 Insert a trace API call that generates a monotonically increasing separator as an

integer counter at the beginning boundary of a sync region.

With Rules 1 and 2, one character that corresponds to one access to a sync variable will
be generated, and these characters allow us to distinguish sync writes and sync loops. With
Rule 3, we expect a separator to facilitate the distinction of traces over the detected ad hoc
synchronizations. Note that BARRIERFINDER enumerates interleavings sync region by sync
region. With these rules, we obtain traces like 11WRR22WRR for two consecutive barriers

Empirical Software Engineering (2020) 25:4676–4706 4685



with 2 threads. It is then straightforward for BARRIERFINDER’s trace analyzer to separate
traces into several independent ones and to correlate them to sync regions.

3.1.4 Scheduling API Instrumentation

To guide the symbolic engine to enumerate different interleavings, BARRIERFINDER further
instruments the sliced program with scheduling API calls. One may think of BARRI-
ERFINDER’s middle end as executing on a uni-core processor, i.e., there is only one running
thread per execution state at any time, whereas concurrency among multiple threads is
achieved via the instrumented scheduling API calls. BARRIERFINDER’s middle end relies
on scheduling API calls to know the timing for interleaving enumeration. A scheduling API
call is a special function call instruction instrumented by BARRIERFINDER’s front end.

To decide where to instrument scheduling API calls, we divide all instructions within a
sync region into two categories.

1. Instructions accessing global variables or heap variables, which are visible to all
threads, denoted as IG. IG can impose side-effects across threads and affect their
execution.

2. Instructions other than IG, such as accesses to thread-local variables, denoted as IL.
IL can neither “import” side-effects from other threads affecting its own execution nor
“export” side-effects to affect other threads.

As different interleavings of instructions in IL do not change the global program state, it is
sufficient to instrument a scheduling API after each instruction in IG. The scheduling API
essentially instructs the symbolic execution engine to explore different scheduling decisions
at each instrumented call.

3.2 Middle-End Symbolic Execution and Trace Generation

BARRIERFINDER’s symbolic execution engine represents an interleaving with an execu-
tion state. During symbolic execution, the underlying engine forks new execution states
while exploring different scheduling decisions, and there is a one-to-one mapping between
execution states and interleavings. Calls to the scheduling APIs guide BARRIERFINDER’s
symbolic execution engine to explore new interleavings by forking new execution states. As
shown in Fig. 5, there is only one execution state initially. When BARRIERFINDER’s sym-
bolic execution engine sees a scheduling API call, it forks new execution states for each
possible interleaving. Suppose there are t threads, denoted as Ti (1 ≤ i ≤ t), ready to run
in execution state ES0, excluding the currently running thread T0. When BARRIERFINDER

interprets a scheduling API, it first makes t copies of ES0, denoted as ESi (1 ≤ i ≤ t).
It then schedules Ti (1 ≤ i ≤ t) as the running thread for ESi , as shown in the middle of
Fig. 5. As a result, newly forked execution states ESi (1 ≤ i ≤ t) and ES0 only have dif-
ferent running threads. All other execution contexts and resources, i.e., registers, memory
contents and data layouts, are exactly the same. Afterwards, each execution state is executed
independently to enumerate all interleavings within a sync region with repeatedly forked
states at scheduling API calls until the program exits.

To tackle the challenge of interleaving space explosion, BARRIERFINDER’s middle end
relies on three techniques, namely interleaving reduction (IR), interleaving avoidance (IA),
and early loop termination (ET). These techniques exploit interleaving equivalence to shrink
the exponential interleaving space and enable BARRIERFINDER’s efficient interleaving
enumeration within sync regions.

Empirical Software Engineering (2020) 25:4676–47064686



The running

thread

A suspended

thread

Before scheduling

After scheduling & 

before reduction

After reduction

An execution state 

with three threads

Fig. 5 Interleaving enumerations and reduction: An execution state in BARRIERFINDER corresponds to an
interleaving

3.2.1 Interleaving Equivalence Test – the Foundation

An interleaving at any point of execution corresponds to one execution state of a multi-
threaded program. Two interleavings are different if they schedule different threads to
execute at any of the same scheduling points. If the same set of sync traces can provably
follow two interleavings, BARRIERFINDER considers them to be equivalent for the pur-
pose of trace enumeration. Specifically, if BARRIERFINDER finds two interleavings with
the same execution context, i.e., program pointers, calling stacks, and memory contents,
across threads, it can guarantee their equivalence and reduce them to one without miss-
ing any distinctive future sync traces. This is because program execution only depends on
the current execution context but not their past interleavings. However, this may be too
restrictive for barriers, where thread identity does not matter. Taking this into consideration,
BARRIERFINDER excludes identifiers of participating threads from the equivalence test. As
BARRIERFINDER’s middle end is a symbolic execution engine, where each interleaving of
the sliced target program is executed by interpretation and its execution context is a managed
data structure, the equivalence check is automatically performed by the middle end.

If two interleavings are equivalent when the interleaving equivalence test is invoked for
a program point P at run time T , we call either one of them an interleaving invariant with
respect to the program point P at run time T . We refer to P as the invariant derivation point
and T as the interleaving reduction time. The actual values of P and T are specified when
the interleaving equivalence test is invoked, which are elaborated for interleaving reduction
and interleaving avoidance in Section 3.2.2 and Section 3.2.3, respectively.

3.2.2 Interleaving Reduction – the Enabling Technique

Interleaving reduction (IR) reduces redundant exploration among equivalent interleavings.
The program point P is a compile-time instruction in the target program, seen by BARRI-
ERFINDER front end’s static analysis; the reduction time point T to perform interleaving

Empirical Software Engineering (2020) 25:4676–4706 4687



reduction is a run-time instruction seen by BARRIERFINDER’s symbolic execution engine.
They are identified with the following heuristics:

– P should be an instruction within a post-dominator basic block of sync region ending
boundary that all participating threads execute. If only a subset of participating threads
execute P , BARRIERFINDER might miss certain invariants.

– T should be within such a program execution state that it is likely for interleavings to
be equivalent, e.g., when the first or the last participating thread passes P .

BARRIERFINDER selects the first instruction in a sync region’s immediate post-
dominator basic block as P , relative to the sync region’s ending point. T is selected as the
time when the last thread passes P . We implement a classical reference counter to main-
tain the number of threads entering and exiting a sync region. The counter is initialized to
zero indicating that no thread is currently in the sync region. On entry, the counter is incre-
mented; at the exit, it is decremented. When the counter is zero again, the runtime library
knows that the last thread has just passed through the region such that its time T and the
interleaving invariants can be derived.

Upon the first interleaving reaching T , there is no interleaving invariant yet. Hence,
BARRIERFINDER adds this interleaving to the invariant set (IS), suspends its execution
and schedules other interleavings for execution. For any subsequent interleaving reach-
ing T , if an equivalent interleaving is found in IS, the new interleaving is terminated and
all its resources are released immediately; otherwise, BARRIERFINDER adds it to IS as
a new invariant. This process continues until all interleavings have been enumerated and
executed. Then, BARRIERFINDER schedules and executes all invariant interleavings in IS.
As illustrated in Fig. 5, 3 interleavings are assumed to be equivalent after they are forked
and further explored independently. With interleaving reduction, they are reduced into one
representative while the other two are terminated.

3.2.3 Interleaving Avoidance – Loop-Centric Technique One

If a new interleaving to be explored has the same execution context as another interleav-
ing that has already been explored in previous loop iterations, BARRIERFINDER can avoid
exploring this new interleaving. Interleaving avoidance (IA) targets such opportunities for
sync regions that are executed multiple times, especially those in loops. In contrast to
interleaving reduction, interleaving avoidance (IA) is performed before a sync region is
entered.

Specifically, BARRIERFINDER IA selects program point P as the first instruction in the
immediate dominator basic block of a sync region’s beginning boundary and time point T as
when the first thread executes P . BARRIERFINDER IA adds the first interleaving hitting T

to invariant set IS, snapshots its execution context, and continues its exploration as normal.
When a subsequent interleaving hits T , BARRIERFINDER checks whether it is equivalent to
any invariant in IS with the equivalence test. If successful, interleaving enumeration for this
new interleaving is avoided. Otherwise, a new interleaving is identified that has not been
explored before and the algorithm proceeds as normal. In this way, IA prevents redundant
interleaving enumerations from being considered at all across loop iterations.

3.2.4 Early Loop Termination – Loop-Centric Technique Two

We observe that there is usually left-over computation code after slicing. Such code is not
sliced away due to limitations of interprocedural slicing. If such code is within loops, it

Empirical Software Engineering (2020) 25:4676–47064688



may introduce a high execution overhead. Moreover, sync regions do not expose new traces
after several loop iterations in practice. Early loop termination (ET) takes advantage of these
observations by breaking out the innermost loop (ET-loop), which contains the sync regions
being explored after the ET-loop fixed-point state is established. A fixed-point state for each
sync region is established after a sync region has been explored under the same execution
context twice. The fixed-point state for the entire loop is established when all encompassed
sync regions have seen a fixed-point state at least once, which is also the point in time for
ET to be applied. To terminate ET-loop early, ET sets the program counters of all threads to
the first instruction in the immediate post-dominator basic block of the current ET-loop.

3.2.5 Optimizations for Execution Efficiency

We choose the state-of-the-art symbolic execution engine Cloud9 (Bucur et al. 2011) as the
infrastructure for BARRIERFINDER’s middle end. The execution engine is based on inter-
pretation, which is slow compared to native execution. Therefore, it is critical to minimize
the overhead related to interleaving enumeration.

BARRIERFINDER employs a snapshot mechanism to capture execution contexts, which
are used in the interleaving equivalence test Section 3.2.1. To reduce the cost, BARRI-
ERFINDER takes a minimal snapshot as follows. Let’s suppose SR is a sync region being
explored. For interleavings that are created when the first scheduling point within SR is hit
at time c0, their execution contexts (except for their thread state, i.e., suspended/running,
etc.) are the same. As execution progresses, other execution contexts, e.g., global variables,
may diverge. Therefore, it is sufficient to only snapshot those variables that are updated
since c0 and are still alive when the equivalence test is performed.

BARRIERFINDER’s front end is responsible for liveness analysis and snapshot API
instrumentation. Snapshotting is incrementally performed within the BARRIERFINDER

middle end during sync region exploration. This minimizes a snapshot.
As an interpreter, BARRIERFINDER’s symbolic execution engine interprets a target pro-

gram (interpretee). The relationship between an interpreter and an interpretee is similar
to that between a CPU and process. The interpreter and interpretee have separate address
spaces. The interpreter reads instructions from the interpretee’s address space, evaluates it,
and updates interpretee’s execution state (data structures). Generally, the interpreter has lim-
ited knowledge on what the interpretee’s internal execution state means and rarely performs
actions relying on such knowledge. However, BARRIERFINDER does know where the inter-
pretee’s trace buffer is and capitalizes on such a fact. Fig. 6 shows the address space layout
for BARRIERFINDER. BARRIERFINDER symbolic execution engine (interpreter) crosses the
interpreter-interpretee address space boundary for native execution if possible. First, per-
interleaving traces are initially generated and stored in a trace buffer within the interpretee’s
address space. BARRIERFINDER accesses and dumps its trace buffer into a file without the
interpretee’s involvement when an interleaving terminates. We call this technique intrusive
tracing. Similarly, instead of relying on the interpretee to capture its execution context to a
file, BARRIERFINDER snapshots a per-interleaving execution context in buffers within the

Fig. 6 Interpreter-interpretee
address space layout in
BARRIERFINDER: An
application is interpreted in
interpretee space while the
interpreter itself uses native
execution

Symbolic execution engine 

(interpreter address space)

Application

(interpretee address space)
Trace

buffer

Empirical Software Engineering (2020) 25:4676–4706 4689



interpretee’s address space. BARRIERFINDER’s middle end later reads these buffers directly,
performs the equivalence test, and installs a new invariant in the interpreter’s address space
if necessary. All these happen in native mode without file I/O.

3.3 Back-End Trace Mining

BARRIERFINDER’s back end analyzes sync traces to derive critical information for sync
region understanding. Let’s take a sample trace 11WRR as an example. First, BARRI-
ERFINDER extracts the sync region ID 1 and use it to separate sync traces to two parts. It
then checks whether the sub-trace is self-consistent, i.e., the number of 1s should be equal
to the number of Rs since there is one trace point for each of them at the beginning and
ending boundary of a sync region respectively. If self-consistency is confirmed, then BAR-
RIERFINDER tries to match WRR with our pre-defined invariant for barriers WRN . Since
it succeeds for this trace example, BARRIERFINDER uses the extracted ID 1 as the key
to retrieve context information, such as source code line numbers for the sync region and
reports the code region as a barrier.

4 Experimental Evaluation

4.1 Prototype

We implemented BARRIERFINDER’s front end on top of LLVMSlicer (Slaby 2015), and the
boundary analysis and instrumentation pass is implemented as a sub-pass inside the slicer.
BARRIERFINDER’s middle end is built on top of Cloud9 (Bucur et al. 2011), for its flexible
interpretation and symbolic execution capabilities. Although BARRIERFINDER concretizes
the thread number, the program slices can contain other symbolic variables. The back end is
a stand-alone python package, which separates collected sync traces into independent ones,
according to sync region IDs, and also maps them back to their corresponding program
source code contexts. This way, BARRIERFINDER reports the number of recognized ad hoc
barriers and their respective source code ranges.

4.2 Methodology and Experimental Settings

We conduct empirical experiments to evaluate the efficiency and effectiveness of BARRI-
ERFINDER on the SPLASH2 (Woo et al. 1995) suite and a synthetic benchmark suite. All
measurements are conducted on a machine with Intel Core i7-4790 @ 3.60 GHz (hyper-
threading enabled), 16GB DDR3@1600 MHz main memory, and Ubuntu 15.10 as the
operating system.

We use applications from the SPLASH2 suite to evaluate the efficiency of BAR-
RIERFINDER, and we pay special attention to how different techniques speed up the
interleaving enumeration process. SPLASH2 is used in (Xiong et al. 2010)’s ad hoc syn-
chronization study as a representative suite for scientific applications. All the SPLASH2
programs match the assumptions made by BARRIERFINDER as we described in Sec. 1.2,
i.e., they follow the thread-pool model and use a counter-based barrier implementation
as shown in Fig. 2. Nevertheless, these programs contain complex control flows, includ-
ing ad hoc barriers inside loops and consecutive loops, to show the intellectual merits of
BARRIERFINDER.

Empirical Software Engineering (2020) 25:4676–47064690



To evaluate whether BARRIERFINDER can (1) handle counter-based barrier implemen-
tations that are different from the one in Fig. 2 and (2) correctly differentiate ad hoc
synchronizations that implement barriers from those do not, we devise a synthetic bench-
mark suite to evaluate the effectiveness of BARRIERFINDER. Our synthetic benchmarks
have a similar code structure but differ in ad hoc synchronizations. The main thread first
creates one child thread, and all threads execute twice the same sequence of code, which
is a variant of barrier based on the textbook “Synchronization Algorithms and Concur-
rent Programming” (Taubenfeld 2006). In total, we have eight different variants that are
all counter-based (Taubenfeld 2006; Malkis and Banerjee 2014). Among the eight variants,
two are correct ad hoc barriers, where one of them is the same as the ad hoc barrier in
Fig. 2, and the other mainly differs in that it will reset gcount to 0 before line 23 and
always increment oldcount by 1 in line 16. The other six are all wrong implementations
because of different reasons, e.g., different initial values for sync variables, different orders
of certain statements, and whether or not atomic instructions are used. Because of these dif-
ferences, these six wrong implementations violate the semantics of barriers or may result in
deadlocks.

To show that our proposed framework is versatile, we also include one benchmark imple-
menting an allAB (Jin et al. 2012) relationship extracted from MySQL in our synthetic
benchmark suite. Specifically, the allAB relationship in our benchmark requires that the
main thread executing the B operation cannot proceed to execute the B operation until both
child threads cannot execute more A operations, and such an allAB relationship can be
viewed as a variant of barriers.

Since these synthetic benchmarks stress less on interleaving-space enumeration, we
focus on whether BARRIERFINDER can correctly recognize different ad hoc synchroniza-
tions and omit the performance measurements.

BARRIERFINDER takes sync pairs as input. Since SyncFinder (Xiong et al. 2010) is no
longer maintained by the original authors and the code is not available to us, sync-pair anno-
tations are manually inserted. Note that sync pairs are low-level primitive synchronization
constructs in that they are just busy-wait loops and write accesses to shared variables. They
are neither complete implementations of ad hoc synchronizations nor do they indicate the
enforced synchronization relationships.

4.3 Efficiency Results on Real-World Benchmarks

Table 1 shows the results for the six SPLASH2 benchmarks currently supported by BAR-
RIERFINDER. Column “LOC./LOB”. lists the number of lines of C source code and LLVM
bitcode. We then show the slicing time of BARRIERFINDER’s front end in column “Slic-
ing time” and the number of ad hoc barriers in column “Patterns (#)”. We next show the
runtime of BARRIERFINDER to exhaustively enumerate the interleavings with the number
of threads bounded to 2. For the remaining columns, subscripts s, t , and r represent slic-
ing/boundary detection, intrusive tracing, and interleaving reduction, respectively. Different
subscript combinations show the runtimes consumed by BARRIERFINDER’s middle end
with different optimizations enabled. For example, Tstr is the runtime with all three opti-
mizations enabled, while Tst is the runtime with slicing/boundary detection and intrusive
tracing enabled but interleaving reduction disabled. N/A indicates benchmark crashes, and
OOR indicates the execution runs out of memory.

Runtimes (in seconds) are averaged for 10 runs, with their standard deviations in paren-
theses. To handle the default trip count of 32 interactions in LU requires interleaving

Empirical Software Engineering (2020) 25:4676–4706 4691



Ta
bl
e
1

O
ve
ra
ll
re
su
lts

of
B
A
R
R
IE

R
F
IN

D
E
R
on

SP
L
A
SH

2
w
ith

sl
ic
in
g/
bo
un
da
ry

de
te
ct
io
n,

in
tr
us
iv
e
tr
ac
in
g,

an
d
in
te
rl
ea
vi
ng

re
du
ct
io
n

B
en
ch
m
ar
k

L
O
C
./L

O
B
.

Sl
ic
in
g
tim

e
Pa
tte
rn
s
(#
)

T
T

s
T

r
T

s
t

T
s
r

T
s
tr

T
s
r

T
s
tr

FF
T

1.
2k
/4
67
9

0.
2
(0
.0
01
)

ba
rr
ie
rs
(7
)

O
O
R

O
O
R

57
.6

(0
.4
4)

O
O
R

17
.4

(0
.1
)

1.
3
(0
.0
6)

13
.4

C
ho
le
sk
y

6.
1k
/2
64
79

94
.8

(0
.1
7)

ba
rr
ie
rs
(4
)

N
/A

N
/A

N
/A

O
O
R

24
(0
.3
)

2.
5
(0
.0
6)

9.
6

R
ay
tr
ac
e

11
k/
24
17
3

15
.8

(0
.0
4)

ba
rr
ie
rs
(1
)

N
/A

N
/A

N
/A

8.
6∗

(0
.0
6)

17
.4

∗ (
0.
06

)
8.
3∗
(0
.0
8)

2.
1

R
ad
ix

1.
2k
/3
85
6

0.
1
(0
.0
2)

ba
rr
ie
rs
(7
)

O
O
R

O
O
R

O
O
R

O
O
R

10
8.
8
(1
.0
)

4.
5
(0
.1
7)

24
.2

L
U

1.
1k
/4
55
5

0.
53

(0
.0
01
)

ba
rr
ie
rs
(5
)

N
/A

N
/A

N
/A

O
O
R

31
.3

(0
.2
)

1.
7
(0
.0
1)

18
.4

FM
M

5k
/1
65
83

18
.2

(0
.1
)

ba
rr
ie
rs
(1
0)

O
O
R

O
O
R

35
5.
4
(7
.8
)

O
O
R

33
3.
5
(1
.6
)

12
.3

(0
.0
8)

27
.1

Empirical Software Engineering (2020) 25:4676–47064692



avoidance and early loop termination, the results for LU in Table 1 are measured with
trip count as 1 to show the benefits of slicing/boundary detection, intrusive tracing, and
interleaving reduction on LU.

4.3.1 Observations

We make the following observations from our results:
1 BARRIERFINDER is effective in detecting different numbers of ad hoc barriers in these

benchmarks, and we manually confirmed that BARRIERFINDER detects all the barriers in
each benchmark. To the best of our knowledge, BARRIERFINDER is the first tool to have
such a capability. No prior work, including SyncFinder (Xiong et al. 2010), can detect any
of these ad hoc barriers in whole. The trace generated for two consecutive barriers in LU
is 11WRR22WRR. BARRIERFINDER’s back end divides such a string by considering 11
and 22 as separators. The two characteristic sub-traces WRR match our predefined tempo-
ral invariant for barriers, and their corresponding sync regions are accordingly reported as
barriers. The sync regions contain both the upper and lower loops in Fig. 2. The detected
pattern and sync region reports show that BARRIERFINDER is able to detect the entire code
construct of ad hoc barriers and recognize their barrier semantics.

It is possible for BARRIERFINDER to report false positives, i.e., BarrierFinder reports an
ad hoc barrier but it is actually not one. False positives can happen since BARRIERFINDER

can only exhaustively enumerate the interleaving space when there are a small number of
participating threads, and there could be ad hoc synchronizations exhibiting different tem-
poral invariants under different participating thread numbers. A false negative happens if
BarrierFinder fails to recognize an ad hoc barrier or fails to characterize it correctly, which
can happen if the sync write and sync loop are not identified in the first place. We assessed
the quality of our evaluation results based on our understanding of the benchmarks, and we
observed neither false negatives nor false positives in our evaluation.

2 BARRIERFINDER is efficient in recognizing ad hoc barriers. Specifically, column
“Tstr” in Table 1 shows the time spent in the middle end, which is usually less than 10
seconds when there are two participating threads. This shows our optimization techniques,
combined together, make our approach quite efficient.

3 Interleaving reduction is the critical technique that enables BARRIERFINDER to
efficiently enumerate the interleaving space of ad hoc barriers. Column “Tst” shows the
runtimes of the middle end with slicing/boundary detection and intrusive tracing enabled
but without interleaving reduction (IR). Except for Raytrace that contains only one bar-
rier, all benchmarks run out of memory resources in less than two minutes and progress
very slowly after that. In comparison, runtimes in column “Tstr” show that IR is critical for
BARRIERFINDER’s efficiency.

4 Slicing and boundary detection is critical for BARRIERFINDER’s middle end to suc-
ceed in analyzing the benchmarks. As shown in column “Tr”, without slicing/boundary
detection, BARRIERFINDER’s middle end crashes for Cholesky, Raytrace, and LU. The
cause is rooted in Cloud9, but all benchmarks succeed with slicing/boundary detection
enabled. The slicing overhead for FFT, Radix, and LU is small, but it is higher for Cholesky
and Raytrace. The general trend is that larger benchmarks incur higher slicing overhead.
The benefit of slicing/boundary detection is that it eliminates code that is irrelevant to syn-
chronization explorations and improves middle-end efficiency, which is substantiated by
comparing Tsr and Tr for FFT. Without slicing/boundary detection, the runtime for Radix
is also prohibitively high as its computation exhausts main memory quickly.

Empirical Software Engineering (2020) 25:4676–4706 4693



5 Intrusive tracing boosts BARRIERFINDER’s middle-end performance by up to 27X.
Column “ Tsr

Tstr
” in Table 1 indicates a significant speedup due to our trace optimization

technique, which crosses the interpreter-interpretee boundary.

4.3.2 The Benefits of IA and ET

In our current benchmarks, only LU, Radix, and FMM have loops that encompass sync
regions. We manually adapt their loop trip counts to demonstrate the effectiveness of
interleaving avoidance (IA) and early loop termination (ET). Specifically, we measure the
runtime for the following configurations: (1) Interleaving reduction only (IR), (2) IR with
IA but without ET (IR-IA), and (3) IR-IA with ET (IR-ET). Figures 7a, b, and c show
the performance results for Radix, FMM, and LU, respectively. The x-axis indicates the
loop trip count while the y-axis depicts BARRIERFINDER’s middle-end runtime in seconds
averaged over 10 consecutive runs. Since performance variability is small (see standard
deviations in Table 1), other runtime statistics are omitted to save space. Note that results
for IR are provided only if BARRIERFINDER does not exhaust the 16GB memory under that
configuration.

The results show IA and ET are the enabling techniques for exploring sync regions in
loops. As we see in these figures, ET and IA significantly improve BARRIERFINDER’s

Fig. 7 The effect of interleaving avoidance (IA) and early loop termination (ET) under different iteration
counts

Empirical Software Engineering (2020) 25:4676–47064694



efficiency compared to IR only. Such a performance improvement is critical for LU, which
otherwise cannot be explored without reduction on its loop trip count when only IR is
enabled. Also, IA and ET enable BARRIERFINDER to explore two orders of magnitude more
iterations than IR-only for Radix and FMM.

4.4 Effectiveness Results on Synthetic Benchmarks

Our synthetic benchmark suite contains eight variants of barriers and one allAB. As men-
tioned in Section 4.2, most of them are flawed implementations with different root causes,
demonstrating the challenges that developers may face in practice. The expected trace pat-
terns without sync region IDs areWRRWRR andWWR for barriers and allAB, respectively.
BARRIERFINDER exits once a violation to either pattern or a deadlock is found.

Table 2 shows the effectiveness results of BARRIERFINDER on our synthetic benchmark
suite. “Deadlock” indicates if a deadlock occurs; “Violation trace” is the first trace violating
expected trace patterns while “Violation sequence ID” shows how many valid traces have
been generated before the violation trace; “Atomic” indicates whether or not the barrier
counter, e.g., gcount in Fig. 2 is accessed and checked atomically, and “Description”
provides a short description for each benchmark’s detection result.

We make the following observations from results in Table 2:
1 BARRIERFINDER has neither false positives nor false negatives for the synthetic

application suite (“Actual” and “Characterized” are the same), since it enumerates all
non-equivalent feasible interleavings.

2 BARRIERFINDER reliably differentiates correct barrier implementations from wrong
ones. Barriers 1 and 2 are correct while others have different problems. For a violation, BAR-
RIERFINDER not only reports the violation trace but also produces the contexts, e.g., thread
scheduling status and call stacks, which helps programmers understand the root causes. As
shown by “Description”, incorrect barriers encounter different problems.

3 BARRIERFINDER recognizes allAB, which can be regarded as a different variant of
barriers. This also shows the potential for further generalization of the framework to other
ad hoc synchronizations.

4.5 Generalization to any Number of Threads

BARRIERFINDER successfully enumerates the interleaving space of ad hoc barriers when
the number of participating threads is small, which is critical for automatic recognition of
synchronizations and understanding of their correctness. To go beyond that, we give an
inductive proof over the number of participating threads, n. Others can use our proof as a
template to generalize the results from BARRIERFINDER that an ad hoc synchronization is a
barrier with two participating threads to any number of participating threads, even for other
synchronization constructs. We highlight that the base case (n = 2) for our inductive proof
is proved by BARRIERFINDER. Without BARRIERFINDER, such a manual inductive proof
would be extremely tedious, if not infeasible.

Consider the following invariants for the algorithm in Fig. 2: (1) At line 28, which we
refer to in the following as the program blocking point, Pb, the invariant Ib(i) : newcount =
i holds for all threads 1..n − 1 and these threads will busy wait at Pb as long as gsense =
lsense. (2) At line 23, Ir (i) : newcount = i holds for thread i = n, and the postcondition
of Ir is gsense �= lsense, which will subsequently cause threads 1..n−1 to proceed past Pb

Empirical Software Engineering (2020) 25:4676–4706 4695



Ta
bl
e
2

O
ve
ra
ll
re
su
lts

of
B
A
R
R
IE

R
F
IN

D
E
R
on

th
e
sy
nt
he
tic

ap
pl
ic
at
io
n
su
ite
.N

um
be
rs
in

tr
ac
es

ar
e
sy
nc

re
gi
on

ID
s

ID
A
ct
ua
l

C
ha
ra
ct
er
iz
ed

D
ea
dl
oc
k

V
io
la
tio

n
V
io
la
tio

n
A
to
m
ic

D
es
cr
ip
tio

n

tr
ac
e

se
qu

en
ce

ID

1
ba
rr
ie
r

ba
rr
ie
r

N
o

N
/A

N
/A

Y
es

A
re
us
ab
le
ba
rr
ie
r

2
ba
rr
ie
r

ba
rr
ie
r

N
o

N
/A

N
/A

Y
es

A
re
us
ab
le
ba
rr
ie
r

3
ba
d
ba
rr
ie
r

ba
d
ba
rr
ie
r

Y
es

11
W
R
R

33
20

Y
es

B
ot
h
th
re
ad
s
ar
e
bl
oc
ke
d
at
th
e
se
c-

on
d
in
vo
ca
tio

n

4
ba
d
ba
rr
ie
r

ba
d
ba
rr
ie
r

N
o

11
W
R
2R

R
2W

R
0

Y
es

Pa
tte
rn

vi
ol
at
io
n

5
ba
d
ba
rr
ie
r

ba
d
ba
rr
ie
r

N
o

11
W
R
2R

R
2W

R
0

Y
es

Pa
tte
rn

vi
ol
at
io
n

6
ba
d
ba
rr
ie
r

ba
d
ba
rr
ie
r

Y
es

11
W
R
2R

2W
R
W

18
N
o

O
ne

th
re
ad

go
es

th
ro
ug
h
th
e
se
co
nd

in
vo
ca
tio

n,
th
e
ot
he
r
is

bl
oc
ke
d
at

th
e
se
co
nd

in
vo
ca
tio

n

7
ba
d
ba
rr
ie
r

ba
d
ba
rr
ie
r

Y
es

11
W
R
2

0
N
o

O
ne

th
re
ad

is
bl
oc
ke
d
at

th
e
fi
rs
t

in
vo
ca
tio

n,
th
e
ot
he
r
is

bl
oc
ke
d
at

th
e
se
co
nd

in
vo
ca
tio

n

8
ba
d
ba
rr
ie
r

ba
d
ba
rr
ie
r

Y
es

11
W
R
2

0
Y
es

sa
m
e
as

ab
ov
e

9
al
lA
B

al
lA
B

N
o

N
/A

N
/A

N
/A

al
lA
B

Empirical Software Engineering (2020) 25:4676–47064696



by exiting the loop. In conjunction, Ib and Ir establish the barrier semantics, where 1..n− 1
threads wait until thread n releases the others and then proceeds to Pb itself, where it does
not enter the loop as gsense �= lsense. Notice that lcount and newcount are local variables
with thread-specific values while gsense is a global variable shared between threads.

Base: Let us assume that lsense = 1. For n = 2, thread 1 is first to successfully exe-
cute CmpXchg (such that updatecount = oldcount), i.e., its newcount = 1 = Ib(1)
(as gcount is incremented by 1) such that it proceeds to Pb eventually. Thread 2 will
succeed in CmpXchg later so that its newcount = 2 = n = Ir (2), i.e., it will get to
Pr and set gsense to the inverse of lsense. This releases thread 1, which will eventually
proceed past Pb and allows thread 2 to bypass the loop at Pb so that both thread exit the
barrier. (The argument for lsense = −1 is symmetrical with decrements over gcount ,
where thread 2 eventually reaches Pr with newcount = 0.) In fact, BARRIERFINDER has
already proved that these invariants hold as part of the states at Pb, Pr considered during
execution interleaving, including the correct barrier semantics of leaving only after all
threads have arrived, by exhaustive state enumeration.

Hypothesis: For n threads, let us assume that Ib(i) holds for all i = 1..n − 1 threads
and Ir holds for thread n, including correct barrier semantics upon proceeding past these
program points.

Step: For n + 1 threads (and gsense = 1), consider two cases.

(1) Let the last one to succeed with the CmpXchg be thread n + 1. For threads
1..n − 1, the hypothesis established Ib(n) at Pb with increasing newcount values
as gsense = 1. Thread n is now the second to last one to succeed in CmpXchg,
so newcount = n = Ir (n), which causes this thread to bypass Pr and proceed
toward Pb, where it would busy wait due to gsense = lsense. And for thread
n + 1, as the last one to succeed in CmpXchg, newcount = n = Ib(n + 1) with
lsense = gsense = 1, reaching Pr to invert gsense before reaching Pb without
entering the loop gsense �= lsense.

(2) Let thread n + 1 be any base the last thread to succeed in CmpXchg. Without loss
of generality, let thread n + 1 succeed as the m-th thread in CmpXchg. Then there
are threads i = 1..m − 1 who succeeded in CmpXchg before and, with increas-
ing lsense, are proceeding to Pb under Ib(i) by the hypothesis. For thread n + 1,
newcount = m = Ib(m), so it proceeds toward Pb. Threads j = m + 1..n
succeed in CmpXchg in the respective indexed order next, i.e., their respective
newcount = j = Ir (j). The last one to succeed in CmpXchg, say thread l, has
newcount = n + 1 = Ir (n + 1) and proceeds to Pr inverting gsense and then to
Pb bypassing the loop as per hypothesis.

This establishes the correct barrier semantics upon continuing past Pb for all threads. The
cases for gsense = −1 are symmetrical (with decrements per thread succeeding in CmpX-
chg). Furthermore, alternating gsense signs upon successive barriers of n + 1 threads
establish the same barrier semantics as for n threads, i.e., only after Pr is reached by the
last thread in the previous barrier may all threads proceed to enter the next barrier, where
they then enter in increasing/decreasing newcount order for gsense = 1/gsense = −1.
Any thread still at Pb of the previous barrier may proceed as their local lsense �= gsense

while other threads already in the next barrier set lsense to gsense (line 13), so that they
eventually spin in line 28 at Pb, other than the last thread.

Empirical Software Engineering (2020) 25:4676–4706 4697



4.6 Limitations and FutureWork

We have open-sourced a software package (Wang 2020) for the reproduction of BARRI-
ERFINDER and for improvement by the research community. Currently, we make several
assumptions that lead to the following limitations in BARRIERFINDER, which we leave as
future work:

1. BARRIERFINDER currently only supports the automatic detection and correctness ver-
ification of counter-based ad hoc barriers and detection of the allAB relationships. We
plan to enable support of other types of barriers, like tree-based ones, by extending
BARRIERFINDER with more pre-defined patterns and adding necessary techniques.

2. BARRIERFINDER works with global thread-pool based programs. The master thread
spawns multiple child threads, which participate in the same barriers. BARRIERFINDER

cannot handle multi-threaded programs with multiple thread pools or the case that only
part of all threads participate in the same barriers. This may require manual reduction
on the scale or the concurrency model of the source programs before being applied to
BARRIERFINDER.

3. BARRIERFINDER’s overhead reduction optimizations we proposed so far may only
work with other barrier implementations and ad hoc synchronizations after modi-
fication. Applicability and scalability of these techniques on new applications, e.g,
other types of ad hoc synchronizations mixed with ad hoc barriers, still need further
assessment.

5 Related work

5.1 Synchronization Characterization and Detection

Several empirical studies related to synchronizations have been performed. Xiong et al.
(2010) characterize ad hoc synchronizations of representative open-source applications and
find they are pervasive. Pinto G et al. (2015) and Wu et al. (2016) survey real-world C++
and Java programs to assess how programs are synchronized in practice with concurrent
language features, concurrent libraries, or concurrent data structures. Concurrent bug stud-
ies (Farchi et al. 2003; Lu et al. 2008; Zhang et al. 2011) try to characterize the pattern
of concurrency bugs to facilitate their detection. Gu et al. (Gu et al. 2015) investigate how
programmers change program synchronizations and their relation to concurrency bugs. The
results of these studies motivate us to work on accurate synchronization understanding and
guide the design of our approach.

Specifically, on ad hoc synchronizations, existing techniques (Jannesari and Tichy 2010,
2014; Tian et al. 2008, 2009; Xiong et al. 2010; Yin 2013; Yuan et al. 2013) use either
static or dynamic approaches to detect sync pairs. We proceed further to detect complete
synchronizations and recognize enforced synchronization relationships.

5.2 Barrier Analysis

Kamil and Yelick (2006) propose interprocedural concurrency analysis for single program
multiple data programs written in a Java dialect, Titanium, which statically guarantees
that all threads reach the same sequence of textual barriers. Zhang et al. (2008) transform
OpenMP programs into control flow graph with all OpenMP implied barriers, and then treat

Empirical Software Engineering (2020) 25:4676–47064698



the barrier matching as a regular expression while parsing the CFG. Their approach can
handle textually unaligned barriers. Our work does not assume any prior knowledge about
barriers and tried to recognize barriers with ad hoc implementations. As a result, BAR-
RIERFINDER results can be used as a foundation for the aforementioned work of barrier
analysis.

5.3 Runtime Invariant Detection

Our approach recognizes ad hoc barriers by mining execution traces for temporal invariants.
Invariant mining is a technique pioneered by Daikon (Ernst et al. 2007), and our approach
shares many common elements with Daikon, e.g., generating concrete traces and mining
traces for invariants. Similar to our work, researchers have also explored temporal invari-
ant mining for different purposes. Beschastnikh et al. (2011) propose techniques to mine
temporal invariants based on partially ordered logs, and CSight (Beschastnikh et al. 2014)
further uses temporal invariants to model concurrent systems. CloudSeer (Yu et al. 2016)
uses temporal invariants to model the workflow of cloud systems and then uses the models
for monitoring purposes. Instead, we focus on inferring the synchronization relationship of
ad hoc synchronizations.

5.4 Interleaving Reduction

Due to the exponential explosion of thread interleavings in multithreaded programs, there
has been a large body of work on reducing the interleaving space and optimizing inter-
leaving exploration in testing and verification. Limiting scheduling points, threads, or sync
variables is a common idea to reduce the interleaving space. Musuvathi and Qadeer (Musu-
vathi and Qadeer 2007) propose an iterative context-bounding technique that limits the
number of preempting context switches. Blum and Gibson (Blum and Gibson 2016) pro-
pose on-the-fly adjustment of preemption points. Bindal et al. (Bindal et al. 2013) propose
a variable and thread bounding technique. In our work, the slicing-based scope reduc-
tion leverages the similar idea by identifying and using high-level sync regions as the
scheduling scope. In addition to constraining the space, some work focuses on finding
equivalent interleavings to avoid exhaustive interleaving enumeration. Mazurkiewicz equiv-
alence (Mazurkiewicz 1987) is a widely accepted equivalence class, and there are also
variations (Wang et al. 2009; Chalupa et al. 2017). In the future, we can incorporate these
interleaving reduction techniques while extending our framework for other more complex
ad hoc synchronizations.

5.5 Program Slicing

Classic program slicing (Weiser 1981, 1984) is based on program’s control flow graph of
sequential programs and is known to produce unnecessarily large slices due to the calling
context problem (Horwitz et al. 1990), which has been addressed (Gallagher 2004) and is
functionally equivalent to more recent slicing techniques (Horwitz et al. 1990) based on
program dependency graphs (PDG). In practice, the wide acceptance of pointers in pro-
gramming languages, such as C/C++, slices inflate even more because of a conservative
interpretation of imprecise pointer analyses (Andersen 1994; Steensgaard 1996; Shapiro and
Horwitz 1997). Anderson’s algorithm (Andersen 1994) is known to be more precise than
others (Steensgaard 1996; Shapiro and Horwitz 1997) and popular in practice. Moreover,
as Hind at al. (Hind and Pioli 2000) show, adding context-sensitivity and flow-sensitivity

Empirical Software Engineering (2020) 25:4676–4706 4699



results in little improvement in precision. In our work, BARRIERFINDER’s front end is based
on LLVMSlicer (Slaby 2015), implementing Anderson’s algorithm with field-sensitivity.
Thus, it can perform slicing on fields of a structure. We notice there are many occasions that
a sliced program contains time-consuming computation, which can be omitted in the slice.
One may try to devise more precise pointer analysis techniques (Hardekopf and Lin 2007),
fixing the calling context problem or employing PDG-based slicers.

The slicing of concurrent programs is more challenging (Nanda and Ramesh 2006;
Krinke 2003; Giffhorn and Hammer 2009). Precision depends on the model of concurrency,
i.e., the program synchronization structure. Our goal is to facilitate the understanding of
the model of concurrency by inferring the semantics of synchronization constructs used.
Instead of relying on these concurrent program slicing approaches, we enhance the original
slicing algorithm in LLVMSlicer (Slaby 2015) by constraining the underlying concurrency
model to the work-crew model (IBM corporation 1998) based on the Pthread standard. In
the future, we may resort to more general algorithms (Nanda and Ramesh 2006; Krinke
2003).

5.6 Related Program Development Tools

Various program development tools, such as data race detectors (Bessey et al. 2010; Lee
et al. 2012; Raman et al. 2012; Surendran et al. 2014; Sadowski and Yi 2014), atomicity
violation detectors (Park et al. 2009; Lucia et al. 2010), order violation detectors (Zhang
et al. 2010), synchronization-oriented performance profilers (Yu and Pradel 2016; Chen
and Stenstrom 2012) and concurrent program slicers (Nanda and Ramesh 2006; Krinke
2003), depend on the understanding of the input program synchronization structure for their
accuracy or performance. Such critical information is usually obtained by may-happen-in-
parallel analysis (Chen et al. 2012; Di et al. 2015; Li and Verbrugge 2005), which further
depends on the understanding of both standard and custom synchronizations. We believe
SynCat’s capability of automatically understanding custom synchronizations is comple-
mentary and fundamental to all the aforementioned dependent analysis and development
tools.

6 Conclusion

This paper contributes BARRIERFINDER, a pipelined framework to automate the recog-
nition of complex ad hoc synchronizations that realize barriers. During compile time,
BARRIERFINDER applies program slicing to reduce irrelevant computation and develops a
novel approach to detect synchronization boundaries for reducing the scope of interleav-
ing enumerations. During runtime, a sequence of interleaving space reduction techniques
greatly shrinks the exponential interleaving space into a linear one, in terms of number of
barriers in a program. Various intrusive interpretation-based optimizations further improve
the execution efficiency. BARRIERFINDER addresses the space-explosion problem with
these techniques when there are two participating threads, which establishes a base case for
an inductive proof to generalize the result for any number of threads. The experimental eval-
uation shows that BARRIERFINDER is able to detect barriers in six SPLASH2 benchmarks
efficiently. To our knowledge, BARRIERFINDER is the first tool that can detect ad hoc barri-
ers as a whole synchronization constructs. We further assess BARRIERFINDER with a set of
synthetic benchmarks most of which are incorrect counter-based barrier implementations.

Empirical Software Engineering (2020) 25:4676–47064700



Our evaluation demonstrates that BARRIERFINDER is capable of detecting different imple-
mentation errors, verify the correctness of counter-based barriers, and characterizing other
ad hoc synchronizations like allAB. We believe BARRIERFINDER contributes to the funda-
mental problem of accurate program synchronization understanding and has the potential to
improve a spectrum of program analysis and development tools.

References

Andersen LO (1994) Program analysis and specialization for the c programming language. PhD thesis,
University of Cophenhagen

Beschastnikh I, Brun Y, Ernst MD, Krishnamurthy A, Anderson TE (2011) Mining temporal invariants
from partially ordered logs. In: Managing large-scale systems via the analysis of system logs and
the application of machine learning techniques. ACM, New York, NY, USA, SLAML ’11, 3:1-3:10.
https://doi.org/10.1145/2038633.2038636

Beschastnikh I, Brun Y, Ernst MD, Krishnamurthy A (2014) Inferring models of concurrent systems from
logs of their behavior with csight. In: Proceedings of the 36th International Conference on Software Engi-
neering, ACM, NewYork, NY, USA, ICSE 2014, pp 468–479, https://doi.org/10.1145/2568225.2568246

Bessey A, Block K, Chelf B, Chou A, Fulton B, Hallem S, Henri-Gros C, Kamsky A, McPeak S, Engler D
(2010) A few billion lines of code later: Using static analysis to find bugs in the real world. Commun
ACM 53(2):66–75. https://doi.org/10.1145/1646353.1646374

Bindal S, Bansal S, Lal A (2013) Variable and thread bounding for systematic testing of multithreaded pro-
grams. In: Proceedings of the 2013 International Symposium on Software Testing and Analysis, ACM,
New York, NY, USA, ISSTA 2013, 145–155. https://doi.org/10.1145/2483760.2483764

Blum B, Gibson G (2016) Stateless model checking with data-race preemption points. In: Proceed-
ings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, ACM, New York, NY, USA, OOPSLA 2016, 477–493,
https://doi.org/10.1145/2983990.2984036

Bucur S, Ureche V, Zamfir C, Candea G (2011) Parallel symbolic execution for automated real-world
software testing. In: Proceedings of the sixth conference on Computer systems. ACM, pp 183–198

Chalupa M, Chatterjee K, Pavlogiannis A, Sinha N, Vaidya K (2017) Data-centric dynamic partial order
reduction. Proc ACM Program Lang 2(POPL):31:1–31:30. https://doi.org/10.1145/3158119

Chen C, Huo W, Feng X (2012) Making it practical and effective: Fast and precise may-happen-in-parallel
analysis. In: Proceedings of the 21st international conference on parallel architectures and compilation
techniques. ACM, New York, NY, USA, PACT ’12, 469–470. https://doi.org/10.1145/2370816.2370900

Chen G, Stenstrom P (2012) Critical lock analysis: Diagnosing critical section bottlenecks in multithreaded
applications. In: Proceedings of the international conference on high performance computing, network-
ing, storage and analysis. IEEE Computer Society Press, Los Alamitos, CA, USA, SC ’12, 71:1–71:11.
http://dl.acm.org/citation.cfm?id=2388996.2389093

IBM corporation (1998) Software models for multithreaded programming. http://www-01.ibm.com/
software/network/dce/library/publications/dceaix 22/a3u2j/A3U2JM53.HTM

Cui H, Simsa J, Lin Y-H, Li H, Blum B, Xu X, Yang J, Gibson G, Bryant RE (2013) Parrot: A practical
runtime for deterministic, stable, and reliable threads. In: Proceedings of the Twenty-Fourth ACM Sym-
posium on operating systems principles, association for computing machinery, New York, NY, USA,
SOSP ’13, 388–405. https://doi.org/10.1145/2517349.2522735

Das M, Southern G, Renau J (2015) Section-based program analysis to reduce overhead of detect-
ing unsynchronized thread communication. ACM Trans Archit Code Optim 12(2):23:23:1–23:23:26.
https://doi.org/10.1145/2766451

Di P, Sui Y, Ye D, Xue J (2015) Region-based may-happen-in-parallel analysis for c pro-
grams. In: Parallel Processing (ICPP), 2015 44th International Conference on, pp 889–898.
https://doi.org/10.1109/ICPP.2015.98

Ernst MD, Perkins JH, Guo PJ, McCamant S, Pacheco C, Tschantz MS, Xiao C (2007) The daikon system
for dynamic detection of likely invariants. Sci Comput Program 69(1):35–45

Farchi E, Nir Y, Ur S (2003) Concurrent bug patterns and how to test them. In: Parallel and distributed
processing symposium, 2003. Proceedings. International. IEEE, pp 7–pp

Gallagher KB (2004) Some notes on interprocedural program slicing. In: Source Code Analysis and Manipu-
lation, 2004. Fourth IEEE International Workshop on, pp 36–42. https://doi.org/10.1109/SCAM.2004.21

Empirical Software Engineering (2020) 25:4676–4706 4701

https://doi.org/10.1145/2038633.2038636
https://doi.org/10.1145/2568225.2568246
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/2483760.2483764
https://doi.org/10.1145/2983990.2984036
https://doi.org/10.1145/3158119
https://doi.org/10.1145/2370816.2370900
http://dl.acm.org/citation.cfm?id=2388996.2389093
http://www-01.ibm.com/software/network/dce/library/publications/dceaix_ 22/a3u2j/A3U2JM53.HTM
http://www-01.ibm.com/software/network/dce/library/publications/dceaix_ 22/a3u2j/A3U2JM53.HTM
https://doi.org/10.1145/2517349.2522735
https://doi.org/10.1145/2766451
https://doi.org/10.1109/ICPP.2015.98
https://doi.org/10.1109/SCAM.2004.21


Giffhorn D, Hammer C (2009) Precise slicing of concurrent programs. Automated Software Engg 16(2):197–
234. https://doi.org/10.1007/s10515-009-0048-x

Gu R, Jin G, Song L, Zhu L, Lu S (2015) What change history tells us about thread synchronization. In:
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering, ACM, New York,
NY, USA, ESEC/FSE 2015, pp 426–438. https://doi.org/10.1145/2786805.2786815. http://doi.acm.org.
prox.lib.ncsu.edu/10.1145/2786805.2786815

Hardekopf B, Lin C (2007) The ant and the grasshopper: Fast and accurate pointer analysis for
millions of lines of code. In: Proceedings of the 28th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, ACM, New York, NY, USA, PLDI ’07, 290–299.
https://doi.org/10.1145/1250734.1250767

Herb S (2005) The free lunch is over: A fundamental turn toward concurrency in software. http://www.gotw.
ca/publications/concurrency-ddj.htm

Hind M, Pioli A (2000) Which pointer analysis should i use? In: Proceedings of the 2000 ACM SIGSOFT
International Symposium on Software Testing and Analysis, ACM, New York, NY, USA, ISSTA ’00,
113–123 https://doi.org/10.1145/347324.348916

Horwitz S, Reps T, Binkley D (1990) Interprocedural slicing using dependence graphs. ACM Trans Program
Lang Syst 12(1):26–60. https://doi.org/10.1145/77606.77608

Jannesari A, Tichy WF (2010) Identifying ad-hoc synchronization for enhanced race detection. In: 2010
IEEE International Symposium on Parallel & Distributed Processing (IPDPS). IEEE, pp 1–10

Jannesari A, Tichy WF (2014) Library-independent data race detection. IEEE Transactions on Parallel and
Distributed Systems 25(10):2606–2616

Jin G, Song L, Zhang W, Lu S, Liblit B (2011) Automated atomicity-violation fixing. In: Proceedings of the
32Nd ACM SIGPLAN Conference on Programming Language Design and Implementation, ACM, New
York, NY, USA, PLDI ’11, 389–400 https://doi.org/10.1145/1993498.1993544

Jin G, Zhang W, Deng D, Liblit B, Lu S (2012) Automated concurrency-bug fixing. In: Proceedings of the
10th USENIX Conference on Operating Systems Design and Implementation, USENIX Association,
Berkeley, CA, USA, OSDI’12, pp 221–236. http://dl.acm.org/citation.cfm?id=2387880.2387902

Kamil A, Yelick K (2006) Concurrency analysis for parallel programs with textually aligned barriers. In:
Proceedings of the 18th International conference on languages and compilers for parallel computing,
Springer, Berlin, Heidelberg, LCPC’05, pp 185–199 https://doi.org/10.1007/978-3-540-69330-7 13

Krinke J (2003) Context-sensitive slicing of concurrent programs. In: Proceedings of the 9th European
Software Engineering Conference Held Jointly with 11th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ACM, New York, NY, USA, ESEC/FSE-11, pp 178–187.
https://doi.org/10.1145/940071.940096

Lee D, Chen PM, Flinn J, Narayanasamy S (2012) Chimera: Hybrid Program Analysis for Determinism. In:
Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, ACM, New York, NY, USA, PLDI ’12, pp 463–474. https://doi.org/10.1145/2254064.2254119

Li L, Verbrugge C (2005) A Practical MHP Information Analysis for Concurrent Java Programs. Springer,
Berlin, pp 194–208. https://doi.org/10.1007/11532378 15

Lu S, Park S, Seo E, Zhou Y (2008) Learning from mistakes: A comprehensive study on real world
concurrency bug characteristics. In: Proceedings of the 13th International conference on architectural
support for programming languages and operating systems, ACM, New York, NY, USA, ASPLOS XIII,
pp 329–339. https://doi.org/10.1145/1346281.1346323

Lucia B, Ceze L, Strauss K (2010) Colorsafe: Architectural support for debugging and dynami-
cally avoiding multi-variable atomicity violations. In: Proceedings of the 37th Annual Interna-
tional Symposium on Computer Architecture, ACM, New York, NY, USA, ISCA ’10, pp 222–233.
https://doi.org/10.1145/1815961.1815988

Malkis A, Banerjee A (2014) On automation in the verification of software barriers: Experience report. J
Autom Reason 52(3):275–329. https://doi.org/10.1007/s10817-013-9290-9

Mazurkiewicz A (1987) Trace theory. In: Advances in Petri Nets 1986, Part II on Petri Nets: Applications
and Relationships to Other Models of Concurrency. Springer, New York, Inc., New York, pp 279–324.
http://dl.acm.org/citation.cfm?id=25542.25553

Musuvathi M, Qadeer S (2007) Iterative context bounding for systematic testing of multithreaded pro-
grams. In: Proceedings of the 28th ACM SIGPLAN Conference on Programming Language Design and
Implementation. ACM, New York , PLDI ’07, pp 446–455. https://doi.org/10.1145/1250734.1250785

Nanda MG, Ramesh S (2006) Interprocedural slicing of multithreaded programs with applications to java.
ACM Trans Program Lang Syst 28(6):1088–1144. https://doi.org/10.1145/1186632.1186636

Park S, Lu S, Zhou Y (2009) Ctrigger: Exposing atomicity violation bugs from their hiding places. In: Pro-
ceedings of the 14th International conference on architectural support for programming languages and

Empirical Software Engineering (2020) 25:4676–47064702

https://doi.org/10.1007/s10515-009-0048-x
https://doi.org/10.1145/2786805.2786815
http://doi.acm.org.prox.lib.ncsu.edu/10.1145/2786805.2786815
http://doi.acm.org.prox.lib.ncsu.edu/10.1145/2786805.2786815
https://doi.org/10.1145/1250734.1250767
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
https://doi.org/10.1145/347324.348916
https://doi.org/10.1145/77606.77608
https://doi.org/10.1145/1993498.1993544
http://dl.acm.org/citation.cfm?id=2387880.2387902
https://doi.org/10.1007/978-3-540-69330-7_13
https://doi.org/10.1145/940071.940096
https://doi.org/10.1145/2254064.2254119
https://doi.org/10.1007/11532378_15
https://doi.org/10.1145/1346281.1346323
https://doi.org/10.1145/1815961.1815988
https://doi.org/10.1007/s10817-013-9290-9
http://dl.acm.org/citation.cfm?id=25542.25553
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1145/1186632.1186636


operating systems. ACM, New York, NY, USA, ASPLOS XIV, 25–36, https://doi.org/10.1145/1508244.
1508249

Pinto G, Torres W, Fernandes B, Castor F, Barros RS (2015) A large-scale study on the usage of java’s con-
current programming constructs. J Syst Softw 106(C):59–81. https://doi.org/10.1016/j.jss.2015.04.064

Raman R, Zhao J, Sarkar V, Vechev M, Yahav E (2012) Scalable and precise dynamic datarace detection
for structured parallelism. In: Proceedings of the 33rd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, ACM, New York, NY, USA, PLDI ’12, pp 531–542.
https://doi.org/10.1145/2254064.2254127

Sadowski C, Yi J (2014) How developers use data race detection tools. In: Proceedings of the 5th Workshop
on evaluation and usability of programming languages and tools. ACM, NewYork, NY, USA, PLATEAU
’14, pp 43–51. https://doi.org/10.1145/2688204.2688205

Shapiro M, Horwitz S (1997) Fast and accurate flow-insensitive points-to analysis. In: Proceedings of the
24th ACM SIGPLAN-SIGACT Symposium on principles of programming languages. ACM, New York,
NY, USA, POPL ’97, pp 1–14. https://doi.org/10.1145/263699.263703

Slaby J (2015) Llvm slicer. https://github.com/jirislaby/LLVMSlicer
Steensgaard B (1996) Points-to analysis in almost linear time. In: Proceedings of the 23rd ACM SIGPLAN-

SIGACT Symposium on principles of programming languages. ACM, New York, NY, USA, POPL ’96,
pp 32–41 https://doi.org/10.1145/237721.237727

Surendran R, Raman R, Chaudhuri S, Mellor-Crummey J, Sarkar V (2014) Test-driven repair of data
races in structured parallel programs. In: Proceedings of the 35th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. ACM, New York, NY, USA, PLDI ’14, pp 15–25.
https://doi.org/10.1145/2594291.2594335

Sutter H, Larus J (2005) Software and the concurrency revolution. Queue 3(7):54–62. https://doi.org/10.1145/
1095408.1095421

Taubenfeld G (2006) Synchronization algorithms and concurrent programming. Prentice-Hall, Inc, Upper
Saddle River

Tian C, Nagarajan V, Gupta R, Tallam S (2008) Dynamic recognition of synchronization operations for
improved data race detection. In: Proceedings of the 2008 international symposium on Software testing
and analysis. ACM, pp 143–154

Tian C, Nagarajan V, Gupta R, Tallam S (2009) Automated dynamic detection of busy–wait synchroniza-
tions. Software: Practice and Experience 39(11):947–972

Wang C, Chaudhuri S, Gupta A, Yang Y (2009) Symbolic pruning of concurrent program executions. In:
Proceedings of the the 7th Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on The Foundations of Software Engineering, ACM, New York, NY, USA,
ESEC/FSE ’09, p 23–32, https://doi.org/10.1145/1595696.1595702

Wang T (2020) Software package for barrierfinder reproduction. https://doi.org/10.5281/zenodo.3902595
Wang T, Yu X, Qiu Z, Jin G, Mueller F (2019) Barrierfinder: Recognizing ad hoc barriers. In: 2019

IEEE International Conference on Software Maintenance and Evolution (ICSME), pp 323–327
https://doi.org/10.1109/ICSME.2019.00049

Weiser M (1981) Program slicing. In: Proceedings of the 5th international conference on Software
engineering. IEEE Press, pp 439–449

Weiser M (1984) Program slicing. IEEE Trans Softw Eng SE-10(4):352–357. https://doi.org/10.1109/TSE.
1984.5010248

Woo SC, Ohara M, Torrie E, Singh JP, Gupta A (1995) The splash-2 programs: Characterization and method-
ological considerations. In: Proceedings of the 22nd Annual International Symposium on Computer
Architecture, ACM, New York, NY, USA, ISCA ’95, pp 24–36 https://doi.org/10.1145/223982.223990

Wu D, Chen L, Zhou Y, Xu B (2016) An extensive empirical study on c++ concurrency constructs. Inf Softw
Technol 76:1–18

Xiong W, Park S, Zhang J, Zhou Y, Ma Z (2010) Ad hoc synchronization considered harmful. In: Pro-
ceedings of the 9th USENIX Conference on operating systems design and implementation. USENIX
Association, Berkeley, CA, USA, OSDI’10, pp 163–176. http://dl.acm.org/citation.cfm?id=1924943.
1924955

Yin L (2013) Effectively recognize ad hoc synchronizations with static analysis. In: International Workshop
on Languages and Compilers for Parallel Computing, Springer, pp 187–201

Yu T, Pradel M (2016) Syncprof: Detecting, localizing, and optimizing synchronization bottlenecks. In:
Proceedings of the 25th International Symposium on Software Testing and Analysis, ACM, New York,
NY, USA, ISSTA 2016, pp 389–400, https://doi.org/10.1145/2931037.2931070

Yu X, Joshi P, Xu J, Jin G, Zhang H, Jiang G (2016) Cloudseer: Workflow monitoring of cloud infrastruc-
tures via interleaved logs. In: Proceedings of the Twenty-First International Conference on Architectural

Empirical Software Engineering (2020) 25:4676–4706 4703

https://doi.org/10.1145/1508244.1508249
https://doi.org/10.1145/1508244.1508249
https://doi.org/10.1016/j.jss.2015.04.064
https://doi.org/10.1145/2254064.2254127
https://doi.org/10.1145/2688204.2688205
https://doi.org/10.1145/263699.263703
https://github.com/jirislaby/LLVMSlicer
https://doi.org/10.1145/237721.237727
https://doi.org/10.1145/2594291.2594335
https://doi.org/10.1145/1095408.1095421
https://doi.org/10.1145/1095408.1095421
https://doi.org/10.1145/1595696.1595702
https://doi.org/10.5281/zenodo.3902595
https://doi.org/10.1109/ICSME.2019.00049
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1145/223982.223990
http://dl.acm.org/citation.cfm?id=1924943.1924955
http://dl.acm.org/citation.cfm?id=1924943.1924955
https://doi.org/10.1145/2931037.2931070


Support for Programming Languages and Operating Systems, ACM, New York, NY, USA, ASPLOS
’16, pp 489–502 https://doi.org/10.1145/2872362.2872407

Yuan X,Wang Z,Wu C, Yew P-C,WangW, Li J, Xu D (2013) Synchronization identification through on-the-
fly test. In: Proceedings of the 19th International Conference on Parallel Processing, Springer, Berlin,
Heidelberg, Euro-Par’13, pp 4–15, https://doi.org/10.1007/978-3-642-40047-6 3

Zhang W, Sun C, Lu S (2010) Conmem: Detecting severe concurrency bugs through an effect-oriented
approach. In: Proceedings of the Fifteenth Edition of ASPLOS on Architectural Support for Program-
ming Languages and Operating Systems, ACM, New York, NY, USA, ASPLOS XV, pp 179–192,
https://doi.org/10.1145/1736020.1736041

Zhang W, Lim J, Olichandran R, Scherpelz J, Jin G, Lu S, Reps T (2011) Conseq: Detecting concurrency
bugs through sequential errors. In: Proceedings of the Sixteenth International conference on architectural
support for programming languages and operating systems, ACM, New York, NY, USA, ASPLOS XVI,
251–264, https://doi.org/10.1145/1950365.1950395

Zhang Y, Duesterwald E, Gao GR (2008) Concurrency analysis for shared memory programs with textually
unaligned barriers. In: Adve V, Garzarán MJ, Petersen P (eds) Languages and compilers for parallel
computing. Springer Berlin, pp 95–109 https://doi.org/10.1007/978-3-540-85261-2 7

Zhao Q, Qiu Z, Jin G (2019) Semantics-aware scheduling policies for synchronization determinism. In:
Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming, Association for
Computing Machinery, New York, NY, USA, PPoPP ’19, p 242–256 https://doi.org/10.1145/3293883.
3295731

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Tao Wang is a Phd candidate in NCSU computer science depart-
ment. He is co-advised by Dr. Frank Mueller and Dr. Guoliang Jin.
His research focuses on compiler-based program analysis and per-
formance auto-tuning. In his spare time, he likes singing, hiking and
surfing.

Xiao Yu is a research scientist at NEC Laboratories America since
2018. He received a PhD (2018) in computer science from North
Carolina State University. His research spans the areas of computer
security, software systems, and software engineering. In recent years,
he has been mainly working on artificial intelligence based intrusion
detection and forensic analysis leveraging heterogenous security data.

Empirical Software Engineering (2020) 25:4676–47064704

https://doi.org/10.1145/2872362.2872407
https://doi.org/10.1007/978-3-642-40047-6_3
https://doi.org/10.1145/1736020.1736041
https://doi.org/10.1145/1950365.1950395
https://doi.org/10.1007/978-3-540-85261-2_7
https://doi.org/10.1145/3293883.3295731
https://doi.org/10.1145/3293883.3295731


Zhengyi Qiu received his Master degree in Computer Engineering
from North Carolina State University in 2016. He is currently work-
ing toward his PhD degree at NCSU. His research interests include
log analysis, data races and concurrency bugs in web applications.

Guoliang Jin received his BE degree in Computer Science and Tech-
nology from the University of Science and Technology of China in
2007 and his PhD degree in Computer Sciences from the University
of Wisconsin-Madison in 2014. He is currently an assistant professor
in the Department of Computer Science at NC State University, where
he is part of the Computing Systems Laboratory. Guoliang Jin’s main
research interest is on software system reliability and performance,
with a focus on multithreaded programs, cloud systems, and web
applications. He has published in system, software engineering, and
programming language venues.

Frank Mueller is a Professor in Computer Science and a member of
multiple research centers at North Carolina State University. Previ-
ously, he held positions at Lawrence Livermore National Laboratory
and Humboldt University Berlin, Germany. He received his Ph.D.
from Florida State University in 1994. He has published papers in
the areas of parallel and distributed systems, embedded and real-time
systems, compilers and quantum computing. He is a member of ACM
SIGPLAN, ACM SIGBED and an ACM Fellow as well as an IEEE
Fellow. He is a recipient of an NSF Career Award, an IBM Fac-
ulty Award, a Google Research Award and two Fellowships from the
Humboldt Foundation.

Empirical Software Engineering (2020) 25:4676–4706 4705



Affiliations

TaoWang1 ·Xiao Yu1 ·Zhengyi Qiu1 ·Guoliang Jin1 · Frank Mueller1

Tao Wang
twang15@ncsu.edu

Xiao Yu
xyu10@ncsu.edu

Zhengyi Qiu
zqiu2@ncsu.edu

1 Department of Computer Science, North Carolina State University, 3266 EB2 Raleigh, NC 27695-8206,
USA

Empirical Software Engineering (2020) 25:4676–47064706

http://orcid.org/0000-0002-0258-0294
mailto: twang15@ncsu.edu
mailto: xyu10@ncsu.edu
mailto: zqiu2@ncsu.edu

	BarrierFinder: recognizing ad hoc barriers
	Abstract
	Introduction
	Motivation
	Contribution

	Example and Overview
	An Illustration of the Major Steps
	Complexity Analysis and Reduction
	Scheduling Scope Reduction
	Avoiding Equivalent Interleavings


	BarrierFinder Design
	Front-end Analysis and Instruction
	Interprocedural Slicing
	Sync Boundary Detection
	Trace API Instrumentation
	Scheduling API Instrumentation

	Middle-End Symbolic Execution and Trace Generation
	Interleaving Equivalence Test – the Foundation
	Interleaving Reduction – the Enabling Technique
	Interleaving Avoidance – Loop-Centric Technique One
	Early Loop Termination – Loop-Centric Technique Two
	Optimizations for Execution Efficiency

	Back-End Trace Mining

	Experimental Evaluation
	Prototype
	Methodology and Experimental Settings
	Efficiency Results on Real-World Benchmarks
	Observations
	The Benefits of IA and ET

	Effectiveness Results on Synthetic Benchmarks
	Generalization to any Number of Threads
	Limitations and Future Work

	Related work
	Synchronization Characterization and Detection
	Barrier Analysis
	Runtime Invariant Detection
	Interleaving Reduction
	Program Slicing
	Related Program Development Tools

	Conclusion
	References
	Affiliations




