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Abstract 
Ridesharing services do not make data of their availability (supply, 
utilization, idle time, and idle distance) and surge pricing publicly 
available. It limits the opportunities to study the spatiotemporal 
trends of the availability and surge pricing of these services. Only 
a few research studies conducted in North America analyzed these 
features for only Uber and Lyft. Despite the interesting observations, 
the results of prior works are not generalizable or reproducible 
because: i) the datasets collected in previous publications are spa-
tiotemporally sensitive, i.e., previous works do not represent the 
current availability and surge pricing of ridesharing services in dif-
ferent parts of the world; and ii) the analyses presented in previous 
works are limited in scope (in terms of countries and ridesharing ser-
vices they studied). Hence, prior works are not generally applicable 
to ridesharing services operating in diferent countries. 

This paper addresses the issue of ridesharing-data unavailability 
by presenting Ridesharing Measurement Suite (RMS). RMS removes 
the barrier of entry for analyzing the availability and surge pricing 
of ridesharing services for ridesharing users, researchers from vari-
ous scientifc domains, and regulators. RMS continuously collects 
the data of the availability and surge pricing of ridesharing services. 
It exposes real-time data of these services through i) graphical user 
interfaces and ii) public APIs to assist various stakeholders of these 
services and simplify the data collection and analysis process for 
future ridesharing research studies. To signify the utility of RMS, 
we deployed RMS to collect and analyze the availability and surge 
pricing data of 10 ridesharing services operating in nine countries 
for eight weeks in pre and during pandemic periods. Using the data 
collected and analyzed by RMS, we identify that previous articles 
miscalculated the utilization of ridesharing services as they did not 
count in the vehicles driving in multiple categories of the same ser-
vice. We observe that during COVID-19, the supply of ridesharing 
services decreased by 54%, utilization of available vehicles increased 
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by 6%, and a 5× increase in the surge frequency of services. We 
also fnd that surge occurs in a small geographical region, and its 
intensity reduces by 50% in about 0.5 miles away from the location 
of a surge. We present several other interesting observations on 
ridesharing services’ availability and surge pricing. 

CCS Concepts 
• Information systems → Web services; • General and ref-
erence → Measurement; Evaluation; • Applied computing → 
Electronic commerce. 
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1 Introduction 
Ridesharing services like Uber and Lyft are famous examples of 
the gig economy and have completed billions of rides around the 
world [19, 43]. These services ofer shorter trip time and lower 
trip fare compared to other transportation modes [24, 41], create 
opportunities for people belonging to social minority groups to 
make a living from already available resources [9], help to reduce 
the vehicle trafc [8], and reduce carbon emissions [6]. 

Given the immense impact of ridesharing services on the current 
socioeconomic fabric, it is essential to make the real-time infor-
mation of availability and surge pricing of these services available 
to various shareholders of ridesharing services, including users, 
researchers, and city regulatory authorities. The term availability 
in this paper encompasses three aspects of ridesharing services, 
which includes: i) supply, i.e., the number of vehicles driving for 
that ridesharing service over any given period of time; ii) utilization, 
i.e., the number of vehicles currently in supply that the passengers 
book over the given period of time; and iii) idle driving time and 
distance, i.e., the time spent and distance traveled by the drivers of 
ridesharing service while looking for passengers. Regarding surge 
pricing, ridesharing services dynamically increase the prices of their 
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trips during times of low supply or excessive utilization. This con-
cept of a dynamic increase in trip fares amid supply and utilization 
imbalance is referred to as surge pricing. 

Publicizing the real-time information of availability and surge 
pricing can beneft multiple stakeholders of ridesharing services. 
Drivers of ridesharing services will be informed about the exact 
high supply and utilization zones at any time of the day, and passen-
gers of such services will be able to see if they can get shorter pickup 
times or lower trip prices in neighboring locations. More impor-
tantly, researchers from various scientifc domains (e.g., economy, 
machine learning, environmental sciences, and logistics manage-
ment) can analyze the real-time data of the availability and surge 
pricing, combined with demographic and transportation datasets 
(e.g., median household income, density population, average paying 
capacity, fuel prices, and road infrastructure) to guide regulators 
on making informed polices on reducing carbon emission, avoiding 
trafc congestion, and reducing pricing bias of ridesharing services. 
However, ridesharing companies do not share real-time supply, 
utilization, or surge pricing details with the public. As a result of 
the unavailability of the related real-time data, it has been difcult 
for city transport authorities and researchers to measure the impact 
of ridesharing companies on the transportation paradigm. 

Only a few multidisciplinary scholarships analyzed the impact 
of ridesharing services in the past. Using the limited datasets of 
availability and surge pricing of certain ridesharing services, studies 
found that ridesharing services serve more trip requests and ofer 
lower trip prices than traditional taxi services [3, 10, 18, 21, 39]. 
Regarding the availability bias of ridesharing services in difer-
ent parts of North America, researchers argued that “whiter” and 
“richer” neighborhoods in North America observe higher supply 
and black riders observe longer wait times and higher trip cancel-
lation rates compared to white riders [3, 25]. Ridesharing services 
multiply foating-point values in the form of 1.× (surge multipliers) 
with the base trip fares to increase the trip prices, which in turn 
can increase the supply and/or decrease the utilization by ofering 
higher profts to drivers and removing the price-elastic passengers 
from the demand. Studies that analyze surge pricing found that 
higher surge multipliers force ridesharing vehicles to go on a “wild 
goose chase" to pick up distant customers and push the drivers 
of ridesharing services to drive for long working hours through 
weekends [5, 7, 32]. 

Despite their interesting insights, the fndings of the related stud-
ies are neither reproducible nor generalizable for diferent socioeco-
nomic regions in the current times because of three limitations: First, 
privately owned ridesharing services are not transparent. They do 
not disclose the granular details of their vehicle supply, ride utiliza-
tion, and surge algorithms to the public [21, 34, 49]. The absence 
of public real-time data is the primary barrier to reproducing or 
furthering the multidisciplinary research to analyze ridesharing 
services’ availability and surge pricing. Second, previous studies 
presented their fndings based on the analyses of small and time-
sensitive datasets because ridesharing services do not share their 
trip level data with the researchers. Authors of related studies relied 
on restrictive data collection methods, such as scraping outdated 
ofcial datasets made public by ridesharing services, manual pas-
senger surveys, booking and paying for hundreds of rides, and even 
driving for ridesharing services [3, 10, 15, 18, 21, 39]. Third, fndings 

of prior studies focus only on Uber and Lyft in a few cities of North 
America. Uber and Lyft in North America are not representative 
of the usage of ridesharing services around the world because the 
socioeconomic conditions of North America are not representative 
of those of other countries in the world. 

To address the limitations mentioned above and remove the bar-
riers to understanding and analyzing ridesharing services, we pro-
pose an end-to-end open-source data feed system called Rideshar-
ing Measurement Suite (RMS). It overcomes the problem of the un-
availability of public data of ridesharing services by continuously 
collecting, analyzing, and exposing the real-time information of 
availability (i.e., supply, utilization, idle time, and idle distance) and 
surge pricing of multiple ridesharing services. RMS continuously 
collects the data of the availability and surge pricing of ridesharing 
services using the web requests used in the ofcial smartphone 
applications of those services. It then processes the collected raw 
data and exposes the analyzed datasets to the public. As tasks like 
deciphering and analyzing the HTTPS web trafc of real smart-
phone applications and querying the servers of ridesharing services 
are mainly in the realm of computer science experts, they are hard 
for researchers of other felds because of the lack of knowledge 
of operating systems, difculty to comprehend network program-
ming, and unfamiliarity with the internet security concepts. RMS 
essentially removes these barriers for researchers to analyze the 
availability and surge pricing of ridesharing services. 

RMS is the frst data feed tool for ridesharing services with two 
key properties, and it ofers two types of user interfaces. The two 
properties include: i) Generic, i.e., any ridesharing service that 
has a smartphone app can be added in RMS for data collection, 
analysis, and presentation; and ii) Geolocation Oblivious, i.e., it is 
deployable in any city around the world where a ridesharing service 
operates. The two interfaces with which RMS exposes the real-time 
information of the availability and surge pricing of ridesharing ser-
vices include: i) Graphical User Interface, which presents the real-
time intensity of availability and surge pricing of the ridesharing 
services in the form of heatmaps on a website; and ii) Public APIs 
which presents the availability and surge pricing data of ridesharing 
services in diferent cities through public JSON APIs. Researchers 
can consume these APIs in various measurement, comparative, and 
ethnographic studies exploring the usage of ridesharing services. 

Currently, we have confgured RMS for 10 ridesharing services 
(i.e., Cabify, Careem, Gett, Heetch, Juno, Lyft, Ola, Shebah, Taxify, 
and Uber) and deployed it in nine diferent countries (i.e., South 
Africa, India, UAE, UK, Australia, Mexico, USA, Canada, and France) 
to continuously collect, process, and present the availability and 
surge pricing information of ridesharing services. To demonstrate 
the applications of RMS, we perform a large-scale measurement 
study to understand the spatiotemporal trends of availability and 
surge pricing of ridesharing services in pre and during COVID-19 
time periods using the data collected and analyzed through RMS. 
The fndings of the measurement study are based on 1.4 billion 
web API responses from the web servers of the ridesharing services 
that we collected using RMS over four weeks in the pre-pandemic 
period (P1: 04/21/2019 - 05/20/2019) and over four weeks during 
COVID-19 (P2: 01/18/2021 - 02/15/2021). 

In general, we conduct a use-case measurement study of RMS to 
cater for the following two shortcomings of related literature: First, 
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previous studies overestimated the supply and miscalculated the 
utilization because they did not address the fact that the majority 
of ridesharing vehicles stay active in multiple ride categories of 
the same service simultaneously. For example, a vehicle can be 
active in both economy and luxury ride categories of Uber simulta-
neously. This shortcoming hints that previous articles may have 
signifcantly overestimated the supply and miscalculated the utiliza-
tion of ridesharing services. Second, although the current pandemic 
has severely afected a range of gig-economy businesses, and as 
a result, ridesharing services have laid of more than 17% of their 
employees amid COVID-19 [2, 20], we do not fnd any published 
article that studies the impact of the COVID-19 on the usage of 
ridesharing services. 

Specifcally, we focus on answering fve important questions 
regarding the usage of ridesharing services in our RMS use-case 
measurement study. First, how to infer the availability of rideshar-
ing services in the presence of vehicles that are active in multiple 
ridesharing services concurrently? Second, does the percentage 
of overlapping vehicles between ridesharing services vary across 
diferent countries? Third, how do the availability of ridesharing 
services difer in experiment regions across the time of the day and 
regions in P1 & P2? Fourth, how do frequencies, radii, and lifespans 
of the surge in ridesharing services vary across cities in pre and 
during COVID-19 periods? And ffth, does the efect of surge on 
the availability of services vary across cities? 

We investigate the collected datasets and make several key obser-
vations that are unnoticed in previous works. We report for the frst 
time that up to 40% of ridesharing drivers stay active in multiple 
categories of a service concurrently. This fnding hints that previ-
ous studies may have miscalculated the utilization of ridesharing 
services. During the pandemic, the supply of ridesharing services 
decreased by 54%, utilization of available vehicles increased by 6%, 
and surge frequency of services increased by 5×. We also observe 
that, during COVID 19, Uber lost its popularity of having maxi-
mum supply in three major cities: New York, Toronto, and Dubai. 
Furthermore, the surge multiplier value decreases by at least 50% 
about 0.5 miles away from the surging location. 

Overall, we make the following contributions in this paper: 

• We present RMS, a publicly available tool for real-time data 
collection and analysis of availability and surge pricing data of 
ridesharing services. It can help the HCI community to evaluate 
the impact of new design recommendations and conduct related 
studies in the domain of ridesharing services. 

• As a use case of RMS, we present a large-scale exploratory study 
of the availability and surge pricing of the 10 popular rideshar-
ing services in nine diferent countries. We further compare 
these metrics thoroughly across the ridesharing services and 
the countries. 

• Using the data collected, analyzed, and presented by RMS, we 
are the frst to extensively quantify the impact of COVID-19 on 
the availability and surge pricing of ridesharing services. We 
make the dataset and analysis scripts used in this study publicly 
available [28]. 

Next, we present the related work (§2), carefully designed method-
ologies for continuous data collection of availability and surge pric-
ing of ridesharing services (§3), and data analysis methodology 

with a focus on data cleansing methods to remove the ambiguous 
record in our collected datasets (§4). We present the RMS tool that 
continuously collects, analyzes, and presents the availability and 
surge pricing information of ridesharing services (§5). We use the 
collected datasets in pre and during COVID-19 phases to present 
the analysis of the availability and surge pricing around the world 
(§6). We discuss the implications of this work (§7), the limitation 
and future directions (§8), and ethical concerns of this study and 
RMS (§9). Finally, we conclude the paper (§10). We also summarize 
all the terms identifed in this study in the appendix (A) at the end 
of the paper. 

2 Related Work 
As a result of the unavailability of public data of availability and 
surge pricing of ridesharing services, prior works employed various 
methods to collect ridesharing services data and analyzed several 
aspects of these services. Based on measurement methodologies 
used in prior work, we classify them into fve categories: 1) as a 
driver, 2) user surveys, 3) booking rides, 4) provider datasets, and 
5) smartphone app logging. Below, we discuss the related papers 
and explain the limitations of each category. 

As driver: Henao et al. [21] collected the supply and utilization 
datasets of ridesharing services by becoming a driver for Uber and 
Lyft. They served 416 rides (Lyft, UberX, LyftLine, and UberPool) 
and added a survey collecting passenger demographics and income 
status while analyzing vehicle miles traveled and travel behavior. 
Caulfeld [18] presented an economist account, who became an 
Uber driver, on economic aspects of the gig economy. Although 
becoming a driver gives hands-on experience, it is not scalable for 
large-scale measurement studies because of human intervention. 

User Surveys: Rayle et al. [39] conducted 380 user surveys to 
compare taxis and ridesharing services in San Francisco. They col-
lected passenger information such as age, household income, educa-
tion, and gender, and studied metrics such as trip distance, vehicle 
occupancy, and wait time. Surveys are efective in relating user 
responses to the demographics of the users. However, they are not 
scalable, and the types of survey questions limit their insights. 

Booking Rides: Ge et al. [14] booked about 1500 rides on UberX, 
Lyft, and Flywheel, in Boston and Seattle to access the racial discrim-
ination in ridesharing services. They analyzed passenger-specifc 
data, e.g., waiting times, travel times, drivers’ cancellation rates, 
costs, and (where applicable) ratings awarded by drivers to the 
travelers, and found evidence of discrimination against African 
American passengers. Although booking rides gives precise infor-
mation on passenger-centric aspects, this method is prohibitively 
expensive to scale to multiple services operating in diferent cities. 

Provider Dataset: In [3, 10], authors used public datasets of 
taxi services and acquired Lyft and Uber data from the respective 
providers. Brown et al. [3] utilized public data on taxi service pro-
vided by the Department of Transportation and requested data 
from Lyft that corresponded to the time frame of taxi service data 
(3 months). They studied the geographic distribution, individual 
usage, and explored evidence of racial or gender discrimination on 
ridesharing and taxi services. However, as noted by the authors, 
provider data is not comparable to other ridesharing services, and 
it also lacks information on the demographics of users. Cramer et 
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al. [10] used public data on taxis and acquired limited data from 
Uber to study capacity utilization rate for taxis and UberX in Los 
Angeles and Seattle. They merged the data for multiple ride cate-
gories of Uber, such as UberX, UberXL, and UberSelect, into a single 
category making the data coarse-grained, and their observations 
do not represent the availability of specifc Uber categories. 

Smartphone App Logging: One body of work collects data by 
emulating ridesharing applications [7, 25] or by logging events in 
these applications [15, 16]. Chen et al. [7] emulated the smartphone 
app of Uber to collect data that the app presents to its users. They 
installed 43 emulated instances of Uber application on diferent 
GPS coordinates to collect data in downtown San Francisco and 
Midtown Manhattan NYC. They studied metrics such as surge 
multipliers, estimated wait times, car supply, and passenger demand 
for all categories of Uber. App emulation is an efective method for 
continuous data collection without human intervention. However, 
Chen et al. [7] only studied Uber, collected data for only two cities 
of the US, and did not provide a public tool or public data set. In [25], 
Jiang et al. collected ride-level traces from Uber and Lyft in San 
Francisco for 40 days and New York City for 27 days. They compared 
the data of Uber and Lyft with taxis and studied spatial-temporal 
aspects of supply and demand. Guo et al. [15] used application 
event logs and public data of taxis and trained neural network for 
surge prediction. They found that the average surge multiplier of 
geolocation is related to the hour-of-day, the day-of-week, and the 
location itself. 

In terms of measurement methodology, our work aligns with the 
app emulation approach [7, 25] in that RMS uses web trafc traces of 
smartphone applications. However, RMS surpasses previous works 
because: i) it is a generic platform capable of measuring diferent 
ridesharing services; ii) it is geolocation oblivious as it is not afected 
by the underlying city architecture and navigation systems, i.e., it 
is deployable in any city with any urban design without modifying 
the presented algorithms; iii) it is live as it continuously provides 
real-time data on the confgured ridesharing services; and iv) it is 
publicly available. 

3 Data Collection Methodology 
This section explains the data collection methods used in RMS. 

3.1 Overall Design 
RMS uses HTTP/S web requests used in the applications of rideshar-
ing services (presented in Table 1) for data collection. We add web 
requests in the data collection scripts of RMS with six steps. First, 
we install an Android-5.0 emulator (NOX [36]) on a computer. Sec-
ond, we install and execute Charles proxy server [46] on that same 
computer. An IP address is automatically assigned to the Charles 
web proxy server program whenever we execute it. Third, we set 
up the web proxy on the Android emulator by adding the Charles 
proxy server’s IP address in the Android emulator’s network set-
tings. Charles proxy server, which now sits between the Android 
emulator and the internet, passes web requests of the applications 
installed on the Android emulator to the internet and receives the 
responses from web servers on their behalf. Fourth, we install and 
execute the selected ridesharing applications on the Android em-
ulator and log applications’ web trafc traces, i.e., record all the 
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Table 1: Cities (short forms), services (short codes), and cate-
gories. The economic categories of ridesharing services are 
mentioned in bold style. Services with ∗ sign quit their op-
erations in P2. 

City Service Categories 

Cape Town (CPT) Uber (U) 
Taxify-Bolt (T) 

X, Assist, XL, Black 
Bolt, Plus 

Delhi (DEL) Uber (U) 
Ola Cabs (0) 

Pool , Go , Premier, XL 
Mini, Prime, Play, Lux 

Dubai (DXB) Uber (U) 
Careem (C) 

Black, Lux, XL 
Go, Economy 

London (LDN) Uber (U) 
Gett (G) 

Pool, X, Assist, X+, XL, Black 
Taxi 

Melbourne 
(MEL) 

Uber (U) 
Taxify-Bolt (T) ∗ 
Shebah (S) 

Pool, X, XL, Lux, Assist 
Bolt 
Economy 

Mexico City 
(MEX) 

Uber (U) 
Taxify-Bolt (T) ∗ 
Cabify (CB) 

Pool, X, Assist, XL, Black, 
Bolt 
Economy 

New York City 
Uber (U) Pool, X, Car Seat, WAV, XL, 

Black 
(NYC) Lyft (L) Shared, Lyft, XL , Lux, Lux XL 

Juno (J) ∗ Bliss, Lux, SUV 

Paris(PAR) 
Uber (U) 

Taxify-Bolt (T) 

Pool, X, WAV, Premuim, Van, 
Green, Berline 
Bolt, Berline 

Heetch (H) Economy 

Toronto (YTO) 
Uber (U) 

Lyft (L) 

Pool, X, XL, Black, Black SUV, 
Assist, WAV 
Shared, Lyft, LX, Lux, Black, 
Black XL 

web requests that applications make to exchange data with their 
web servers. Each HTTP/S web request consists of a request line, 
header parameters, and body content. Fifth, we fnd the specifc 
web requests that RMS will use to collect the availability and surge 
pricing data by manually reading the logs of each application’s web 
traces. Last, we add the recognized web requests in the RMS data 
collection requests repository. RMS will not require the emulator 
and web proxy set up to collect the data of ridesharing services after 
this step. The data collection scripts of RMS periodically call web 
requests from its repository to collect various ridesharing services’ 
availability and surge information in diferent parts of the world. 

To view the encrypted HTTPS trafc of Android emulator appli-
cations in simple text, we add a self-signed private SSL certifcate 
on the local machine that has the Charles web proxy installed. We 
add a corresponding self-signed public SSL certifcate on the An-
droid emulator as a trusted certifcate. However, some of the mobile 
applications use the SSL pinning technique as an additional security 
layer to stop app-server web communication in the presence of a 
self-signed public SSL certifcate. To remove the SSL Pinning checks 
in the ridesharing applications, we decompile the smartphone ap-
plications to get their source codes, then comment the SSL pinning 
checks in the source codes of applications using Frida Hooks [26] 
and SSLUnpinning module of Xposed framework [50], recompile 
the instrumented source codes, and install the patched application 
on the Android emulator. 
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Figure 1. Illustration of data collection source point and 
nearby vehicles 

3.2 Blanketed Region 
RMS collects the data of the availability and surge pricing of rideshar-
ing services from the selected regions of cities that are mentioned 
in Table 1. We refer to the data collection region in each city as 
the blanketed region. To observe the i) maximum trafc of rideshar-
ing vehicles and ii) efect of surge pricing in our pandemic efect 
use-case study, we collect the data of ridesharing services in the 
downtown region in every city (Table 1) in both P1 & P2. Blanketed 
regions of the cities in RMS are Sea Point in CPT-South Africa, Gole 
Market and Connaught Place in DEL-India, the vicinity of Dubai 
world trade center and Al Satwa community in DXB-UAE, the vicin-
ity golden square in LDN-UK, the area of Melbourne Town Hall in 
MEL-AU, the city center in MEX-Mexico, Midtown Manhattan in 
NYC-USA, the vicinity of Cluny Museum in PAR-France, and the 
surroundings of the University of Toronto - St. George Campus in 
YTO-Canada. In each city, we keep blanketed region the same for 
all the available services of that city in both P1 & P2. 

3.3 Nearby Vehicles 
The smartphone applications of ridesharing services make HTTP/S 
web requests along with the user’s geolocation in the request head-
ers to their web servers to retrieve the real-time locations of vehicles 
that are near to the user (known as nearby vehicles) [22, 42]. The 
most common data values that we receive in response to nearby 
vehicles web requests by the servers of ridesharing services in our 
experiment are: i) a list of nearby vehicles in diferent ride cate-
gories (e.g., economy, luxury, etc.); ii) their vehicle ID and their 
geolocations; and iii) the timestamp of response. 

RMS invokes the nearby vehicles web requests of each service-
city instance (e.g., Uber-CPT and Lyft-YTO) from 50 diferent 
geolocations (also referred to as source points) within the blanketed 
region of each city. An illustration of a source point and nearby 
vehicles close to the geolocation of the source point is shown in 
Figure 1. The sampling rate of nearby vehicles request for every 
service-city instance is 10 requests/minute at every source point. 

3.4 Placement of Source Points 
Deciding on the appropriate geographical distance between the 
adjacent source points of data collection is a crucial step. If we 

Figure 2. The distance D1 between two source points at 
times T1 in Midtown Manhattan NYC (with at least one over-
lapping car in the nearby vehicles datasets of both source 
points) 

collect data from locations too far apart, we will not observe all the 
available vehicles within the blanketed region. 

To fnd the proper distance between source points, we collected 
the data of nearby vehicles of every service-city instance from two 
diferent source points on 03/22/2019 with the sampling frequency 
of 10 requests/minutes at each source point. For every service-city 
instance, we began with collecting the data of nearby vehicles with 
the distance between the two source points as 0.3 miles in the blan-
keted region in every hour. After that, we gradually decreased the 
distance between the source points by 100 feet until we found at 
least one overlapping economy category vehicle in the collected 
datasets of both the source points. Finally, we saved all the geo-
graphical distances between the source points with at least one 
overlapping vehicle. We used the minimum of all such distances to 
be the distance between the adjacent source points for each service 
in each city in P1. Figure 2 presents an example of fnding the ap-
propriate distance between data collection source points (S1 and 
S2) at time T1 of the day in Midtown Manhattan NYC, where D1 
represents the least distance between source points with at least 
one overlapping vehicle in the collected datasets of S1 and S2. 

We followed the same protocol on 01/16/2021 to calculate the 
appropriate distance between the adjacent source points of available 
service-city instances for P2. It helped by ensuring we did not miss 
any ridesharing vehicle within the blanketed region of every city 
in pre & during COVID-19 periods. 

Although data collection source points of RMS are currently in-
stalled in each city’s downtown, they can be installed in any geo-
graphical region and will not require editing the presented algo-
rithms. We may observe the quantitative diferences depending on 
the location of source points, but the placement of source points 
will not afect the data quality. 

3.5 Observable Region 
The observable region of any ridesharing service within a given 
time interval represents a polygon with its area as the product of 
distances between the horizontally and vertically farthest observed 
vehicles within that period. In other words, the observable region of 
any service-city instance represents the geographical area in which 
we can trace every available vehicle of that service. It is important 
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to notice that as the number of source points stays fxed at 50, the 
observable region varies from time to time for each service-city 
instance as per the density of nearby vehicles (e.g., vehicles are 
dense during the rush hours but are sparse at 4 AM). 

The purple-colored rectangle represents the observable region 
in Figure 2 in which we can trace every vehicle. Throughout the 
experiment, we fnd Uber’s observable region as the smallest among 
the competing ridesharing services in each city. The averages of 
observable regions of Uber in our experiment are 7.1 mi2 in P1 & 
8.9 mi2 in P2. In both P1 & P2, we observe a signifcantly higher 
number of Uber vehicles in NYC, YTO, and MEL than in other cities. 
Hence, the areas of observable regions of Uber in the mentioned 
cities are relatively smaller as compared to the other experiment 
cities, i.e., NYC (P1: 5.58 P2: 7.37), YTO (P1: 5.16, P2: 7.74), and MEL 
(P1: 6.06, P2: 7.18). 

4 Data Analysis Methodology 
This section defnes the data variables that RMS returns and dis-
cusses methods to clean and analyze the collected datasets. 

4.1 Supply 
In this paper, the supply of a service refers to the number of observed 
unique vehicles of that service within any given time interval. It 
corresponds to the total number of unique vehicles that show up in 
the nearby vehicles web requests of all the data collection source 
points of any service-city instance within a specifc time window. 

Out of 10 services that we study, we face issues identifying 
unique cars in the nearby vehicles datasets of three services, i.e., 
Uber, Lyft, and Taxify. In the coming paragraphs, we explain the 
methodology RMS uses to identify unique cars for these three ser-
vices. In Uber, in response to nearby vehicles web requests invoked 
at diferent source points, the same vehicles appear with diferent 
random encrypted IDs. For example, a same vehicle (V1) appears 
as Car-1 at source point S1 and as Car-2 at source point S2. We fnd 
the same issue in Lyft’s nearby vehicles datasets. This issue makes 
it difcult to count the total number of unique vehicles of these 
services. To classify multiple vehicle IDs as the same vehicle in 
the mentioned service, RMS uses the following algorithm. For each 
source point Si in each city, it compares each vehicle ID’s trajectory 
(a set of ⟨дeolocation and timestamp⟩ tuples) observed in Si with 
the trajectories of vehicles observed in the source points that are 
adjacent to Si . Then, if it fnds overlapping parts in the trajectories 
of any two vehicles, it assumes that both IDs represent the same 
vehicle. Finally, RMS removes the false positives in our processed 
supply datasets by checking if two vehicles were simultaneously 
present at diferent geolocations, even if they have overlapping 
trajectory parts. This algorithm enables RMS to obtain the tight 
upper-bounds of the total number of vehicles for Uber and Lyft. 

Taxify randomizes IDs of available vehicles after every minute, 
making it challenging to count the unique number of vehicles. By 
comparing the geolocation and bearing attributes of the frst oc-
currence of a new ID with that of all the vehicles observed in all 
the source points right before the occurrence of the new ID, RMS 
identifes the new assigned ID of the vehicle. To obtain a realistic 
approximation of the total number of Taxify vehicles, we avoid 

adding any heuristic in RMS (except the distance between geoloca-
tion of “old” ID and the “new” ID to be less than 200 feet within a 6 
seconds interval). 

RMS also removes the vehicles from the supply datasets that 
remained online for less than 30 seconds. They account for only 
12% of the total vehicles recorded in our experiment. Such vehicles 
were also observed in a previous study and referred to as short-lived 
vehicles [7]. A possible reason for observing short-lived vehicles is 
that the servers of ridesharing services in our experiment return 
only a specifc number of vehicles close to a source point in their 
nearby vehicles web requests, e.g., Uber servers return a maximum 
of eight nearby vehicles. It may be the case that short-lived vehicles 
are replaced with closer vehicles in the subsequent requests at the 
geolocation of a source point. We observe 87% of the short-lived 
vehicles in the datasets of source points close to the horizontal or 
vertical boundaries of blanketed regions. This observation makes 
it easy to understand that most short-lived vehicles were driving 
around or near to experiment areas briefy. 

4.2 Utilization 
For any service-city instance, vehicles from the supply that go 
ofine within the observable region in a given time interval are 
referred to as utilized vehicles in this paper. We infer the utilization 
of ridesharing services by counting the number of vehicles that go 
ofine within the observable region within a specifc time window. 

The inferred utilization in this paper is actually the fulflled de-
mand, i.e., the number of vehicles that go ofine, because none 
of the ridesharing services provide public data about the quantity 
demanded (the number of passengers that request rides). The pre-
sented utilization in our study represents the upper bound of actual 
demand since it is possible that some vehicles go ofine not due 
to picking up the passengers but because the drivers are done for 
the time being and turn of the ridesharing applications. Next, we 
discuss our data cleaning approaches for utilization datasets. 

A vehicle can go ofine from the observable region for multiple 
reasons, e.g., a driver turning of the rider application or going 
outside the experiment area. We cannot assess if a vehicle goes 
ofine for the former reason. So, the utilization presented in the 
coming sections is an upper bound of the real utilization. To cater 
to the efect of the latter reason, RMS does not count those vehicles 
in utilization that go ofine with the distance ≤ 500 feet from 
horizontal or vertical boundaries of the observable region. 

While the vehicles of Uber, Lyft, and Taxify with transient ran-
dom IDs cannot reappear in our observable regions after the com-
pletion of rides, the vehicles of services with persistent vehicle IDs 
(where a unique ID is observed for each vehicle in the entirety of 
our data collection periods) may reappear in the observable regions 
within a very short period. In such cases, based on previous fnd-
ings [44], RMS treats ≥10 minutes gap between the two consecutive 
occurrences of the same vehicle ID as the completion of a ride. 

Previous studies do not mention that the signifcant percentage 
of drivers in most of the ridesharing services drive in multiple ride 
categories concurrently (e.g., the same vehicle being available in 
UberX and UberXL at the same time). There is no way to ascertain 
that a vehicle active in multiple categories goes ofine with the trip 
request of which particular type. Counting such vehicles multiple 
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Figure 3. Distribution of Uber vehicles that are observed in 
one or more categories. A tuple with every city represents 
the most frequently repeated pair of categories in P1 & P2. 

times in the utilization of available categories may result in miscal-
culating the utilization of ridesharing services. This fnding hints 
that previous studies [7, 25] may have miscalculated the utilization 
of ridesharing services as they did not report the percentage of 
vehicles available in multiple categories of the same service. 

Figure 3 shows the percentage of Uber vehicles active in one 
or more categories simultaneously during P1 & P2. We observe 
that 15%-40% of the total Uber vehicles in seven out of nine cities 
are active in multiple categories except for DEL and MEX in P1 
and CPT and MEX in P2. The most frequently repeated pair of 
categories for vehicles driving in multiple categories are the two 
least expensive available ride options in each city in both P1 & 
P2. To fnd a close approximation to the true utilization of each 
category C in each service-city instance, RMS runs the following 
protocol: i) represent all the vehicles in category C with a set M ; 
ii) represent vehicles in set M that are only available in category 

′ ′C and not in any other category with a set M where M ⊂ M ; 
iii) count the number of vehicles in M ′ that go ofine within the 
observable region, represented as n; and iv) scale the utilization 
count of category C as: 

|M |
CU t il ization = n × 

|M ′| 

Next, some drivers use multiple ridesharing services, e.g., the 
same vehicle being active in both Uber and Lyft concurrently [12]. 
Upon receiving a trip request from any of the services, they usually 
turn of the other applications. Since there is no way to know which 
service ofered a ride to such vehicles, they might be double-counted 
in the utilization for multiple ridesharing services. To identify the 
vehicles driving in multiple services, RMS frst divides the observable 
region of each city into multiple 50 f eet2 blocks. Then, it observes 
whether the two vehicles available in diferent services follow the 
same trajectory of blocks during the same time window (with the 
maximum delta of ±6 seconds). On the positive outcome of the 
above-mentioned condition, RMS considers the vehicle available in 
multiple services to be the same. 

Table 2 presents the average percentage of daily overlapping ve-
hicles between pairs of all the available services in P1 & P2. Standard 
Deviation (SD) quantifes the spread of the number of overlapping 

Table 2: Percentages of daily shared economic category vehi-
cles between the service-city instances. NA represents that 
either or both of the services stopped services in P2. 

City Services Shared Vehicles 
P1: Mean ± SD P2: Mean ± SD 

CPT Uber - Taxify 2.89% ± 0.69% 3.19% ± 0.71% 
DEL Uber - Ola 2.81% ± 1.99% 4.32% ± 1.11% 
DXB Uber - Careem 3.45% ± 0.63% 5.26% ± 0.42% 
LDN Uber - Gett 3.28% ± 0.97% 3.93% ± 0.31% 

Uber - Shebah 0.02% ± 0.01% 0.44% ± 0.02% 
MEL Uber - Taxify 1.09% ± 0.45% 

NA (T-MEL is not 
available in P2) 

Shebah - Taxify 0% NA 
Uber - Cabify 0.11% ± 0.06% 0.87% ± 0.47% 

MEX Uber - Taxify 0.17% ± 0.09% NA 
Cabify - Taxify 0.55% ± 0.37% NA 
Uber - Lyft 4.03% ± 0.72% 7.12% ± 1.51% 

NYC Uber - Juno 3.69% ± 0.72% NA 
Lyft - Juno 3.77% ± 0.61% NA 
Uber - Taxify 1.05% ± 0.3% 1.77% ± 0.62% 

PAR Uber - Heetch 2.31% ± 0.92% 4.45% ± 0.39% 
Taxify - Heetch 0.06% ± 0.03% 0.81% ± 0.1% 

YTO Uber - Lyft 4.93% ± 1.44% 5.66% ± 1.23% 

vehicles between the services that are observed during each day of 
each phase (i.e., P1 & P2). On average, we fnd 2% of the vehicles 
in P1 and 3.45% in P2 to be active in multiple ridesharing services. 
We notice ≥ 4% overlapping vehicles in some cities (NYC and YTO) 
while ≤ 1% in others (MEL and MEX). We also observe that Shebah 
(the only women ridesharing service) in MEL has < 1% overlapping 
vehicles with other ridesharing services. Overall, we fnd that the 
number of overlapping vehicles in multiple services during the pan-
demic is 1.7X greater than in 2019. Since the percentage of vehicles 
active in multiple ridesharing services concurrently is relatively 
small, RMS excludes them from the availability analysis. 

4.3 Idle Time and Idle Distance 
For all the utilized vehicles that go ofine in availability datasets of 
RMS, the time spent and distance traveled by those vehicles before 
going ofine to serve a trip request are referred to as idle time and 
idle distance, respectively. To calculate idle time and distance, RMS 
records every epoch from the frst appearance of a utilized vehicle 
till it goes ofine and then calculates the distance traveled during 
those epochs using the geolocations returned by the servers of 
ridesharing service on each timestamp. 

4.4 Surge 
Ridesharing services apply surge in the form of a 1.X multiplier 
on the base fare of their trips. They claim that increasing the trip 
cost with higher surge multipliers helps attract more drivers and 
reduces the services’ demand in surging areas [38]. 

The web requests to fetch Upfront Trip Price Estimate from a 
source location to a destination location allows us to see the value 
of surge multiplier at the source location at any given time. We fnd 
the Upfront Trip Price Estimate web requests used in smartphone 
applications of ridesharing services in applications’ web traces and 
execute them in RMS. 
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From each of the 50 data collection source points for each service-
city instance, RMS periodically invokes the Upfront Trip Price Esti-
mate web request of the respective service, with the geolocations 
of source points as the source and the airport of the respective city 
as the destination in the request, to collect the real-time values 
of surge multipliers of services at every source point. The sam-
pling rate of the Upfront Trip Price Estimate web request for each 
service-city instance at each source point is 10 per minute. 

Analysis of surge pricing includes the following fve attributes 
in this paper: i) Surge multiplier value, i.e., the foating-point value 
of surge intensity (in the form of 1.X) which is multiplied with the 
base trip fare to increase the trip prices; ii) Surge instance represents 
the continuous-time window in which surge multiplier value starts 
to increase from 1.0 and drops back to 1.0; iii) Surge frequency 
represents the frequency of surge instances in every day of the 
experiment; iv) Surge lifespan represents the average length of surge 
instances in minutes; and v) Surge radius represents the average 
geographical radius (in miles) of surge instances. 

5 Ridesharing Measurement Suite (RMS) 
There are two primary components of RMS, i) data collection and 
analysis module and ii) data presentation module. Scripts of data 
collection and analysis module of RMS execute on a local computer 
connected to our university’s internet, and the data presentation 
module is hosted on a shared internet hosting server. The data 
collection and analysis module of RMS periodically generates the 
code fles of web pages for the presentation module and uploads 
them on the shared hosting server. 

Currently, RMS collects, analyzes, and presents the data of 10 
ridesharing services in nine cities, which makes the working service-
city instances set of RMS. To add a new element in the working 
service-city instances set, we have to add a fve-attributes tuple in 
that set. The attributes of each tuple are: i) the name of the rideshar-
ing service; ii) the name of the city; iii) the bounding coordinates of 
the blanketed region (upper left, upper right, lower right, and lower 
left coordinates) in that city; iv) the ofcial web requests for surge 
pricing and nearby vehicles; and v) the list of authentication tokens 
of that ridesharing service (a unique token that is assigned to each 
user on signing up) to avoid denial of service and prevent HTTP 
429 (Too Many Requests) error responses. To collect the data of 
working service-city instances set, RMS i) parses the set; ii) fnds the 
appropriate distance between data collection source points for each 
service-city instance; and iii) starts the data collection scripts for 
the nearby vehicles and surge pricing for each service-city instance. 

Considering budget limitations, we decided to host the data pre-
sentation module of RMS on a shared hosting space that allows 
only a limited number of upload requests per day. Although the 
data collection and analysis scripts do not incur any signifcant 
delay in processing and presenting the live updates of availability 
and surge pricing of ridesharing services, to lower the bandwidth 
utilization of the shared hosting server, we decided on the update 
frequency of RMS as once every 15 minutes. After every 15 min-
utes of data collection, RMS invokes supply, utilization, and surge 
analysis modules to analyze the collected data sets by employing 
the methods presented in §4. After analyzing the collected datasets, 
RMS publishes the real-time information of supply, utilization, and 

Figure 4. Supply heatmap of Uber-MEL in RMS on 02/27/2021 

surge attributes (multiplier value, lifespan, and radius) of rideshar-
ing services on two diferent interfaces on hosting space to serve 
the stakeholders of ridesharing services. It publishes the results i) 
on a Graphical User Interface [31], representing the intensity of the 
mentioned data variables using heatmaps in HTML5 and ii) with 
public JSON-based APIs [30] that researchers or regulators can use 
to query the data generated by RMS. 

Before the publication of this paper, researchers from the Beijing 
Institute of Technology (China), which were part of the GEARS 2021 
program [4] cohort at North Carolina State University, requested 
access to RMS APIs and used a set of scripts [29] to save the data 
returned by RMS APIs continuously. They collected the supply data 
of ridesharing services for 30 days. They used the collected datasets 
to train models for the supply prediction of ridesharing services at 
diferent times and days of the week. They presented their fndings 
in a poster at the GEARS 2021 poster presentation demo. 

Next, we describe how RMS collects, analyses, and presents the 
supply, utilization, and surge pricing data with examples. 

Supply: RMS continuously collects the data of nearby vehicles 
of each service-city instance from multiple source points with the 
frequency of 10 nearby vehicles requests per minute at each source 
point as explained in §3. After every 15 minutes, RMS invokes the 
supply cleaning module that disambiguates the collected nearby ve-
hicles dataset of that interval using the data cleaning approaches for 
supply discussed in §4. After that, RMS invokes the supply analyzer 
module that divides the observation region of each service-city 
instance into a grid of 500 feet2 blocks and records the number of 
unique economic category vehicles observed in each block. 

An example of the supply heatmap of RMS for Uber-MEL is 
shown in Figure 4 that presents the number of unique Uber ve-
hicles observed in diferent blocks of the experiment area in MEL 
on 02/27/2021 between 8 PM - 8:15 PM. During that interval, we 
observed the maximum supply at King St and Lonsdale St. The sup-
ply measurement variable of RMS can help the drivers to know the 
actual geographical distribution of ridesharing vehicles and avoid 
the high supply and competition zones. 

Utilization: To fnd the utilization of service-city instances in 
each 15 minutes interval, RMS invokes the utilization analysis mod-
ule. For every 500 feet2 block of the observable region, the uti-
lization analysis module counts the vehicles that go ofine in that 
block before the end of the interval and computes the idle time and 
distance of the utilized vehicles. 

The utilization heatmap of RMS with idle time and distance, for 
Uber-MEL on 02/27/2021 between 8 PM - 8:15 PM, is shown in 
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Figure 5. Utilization heatmap of Uber-MEL on 02/27/2021 

Figure 5. Like supply, we observe the maximum utilization of Uber 
at King St and Lonsdale St. Finding the high utilization areas in 
experiment cities can increase the chances for drivers of ridesharing 
services to get more rides. 

Surges: RMS continuously collects the surge multipliers infor-
mation at all the source points for each service-city instance after 
every six seconds interval. For every surge instance of any services 
observed at any source point, RMS saves the surge lifespan at that 
source point with respect to the time of the day to compute the 
expected surge lifespan based on the surge history at that location. 

Figure 6 shows the surge heatmap with nearest non-surging 
locations (marked with blue circles) and the expected lifespans of 
surge (based on the previous history) for Uber-MEL at 8:10 PM on 
02/27/2021. The surge module’s output can help passengers know 
if they can avoid the surge by walking to a neighboring location 
or waiting for a few minutes. The presentation of the expected 
lifespan of a surge instance can also assist drivers in determining if 
they can reach the surging location before the end of the surge. 

6 Measurement Study with RMS 
In this section, we present a use-case measurement study of RMS, 
which quantifes the impact of COVID-19 on the spatiotemporal 
availability and surge pricing trends of ridesharing services. We 
analyze the data collected using RMS and present our observations 
for the availability and surge pricing of economic category vehicles 
of ridesharing services in our experiment (Table 1). 

In the rest of this section, we represent Pearson correlation coef-
fcient [1] as Pearson ′ s r to measure the correlation across multiple 
timeseries of availability and surge pricing datasets. The value of 
Pearson ′ s r ranges from -1 to +1, where 0 indicates that there is no 
correlation between the given variables while the values greater or 
less than 0 indicate the positive or negative correlation, i.e., values 
in the given multiple timeseries grow in the same or opposite direc-
tions at the same time. The relationship between the given variables 
is considered strong (+ve or -ve) when |r | ≥ 0.7. Furthermore, the 
notations like Uber-CPT represent service-city instances. 

6.1 Supply 
Previous studies found that Uber supply exhibits periodic daily 
trends, and Uber supply count peaks during the morning and 
evening rush hours and declines at night [7, 25]. However, it is 

Figure 6. Surge heatmap of Uber-MEL in RMS on 02/27/2021 
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Figure 7. The average Pearson correlation coefcient be-
tween the supply of Uber across the days of the week in CPT, 
DXB, and YTO in P1 & P2 

unclear if the same supply patterns are observable for the rideshar-
ing services across diferent regions and periods. 

To investigate this, we frst examine correlations between the 
daily supply timeseries. Second, we present the trends of daily 
supply timeseries by counting all the unique vehicles observed 
during each fve-minutes interval of a day for each day of P1 & 
P2. Third, we compare supply counts and peak supply hours of the 
service-city instances in P1 & P2. 

6.1.1 Temporal Correlation of Supply. To measure the correlation 
in the temporal behavior of the supply of ridesharing services, 
we compute the daily supply timeseries of each service-city in-
stance in every fve-minutes window. Each daily supply timeseries 
of service-city instances contains 288 integer values representing 
supply counts in every fve-minutes window of the day. 

Figure 7 shows the average values of Pearson ′ s r between the 
daily timeseries of supply of Uber across the days of the week in 
CPT, DXB, and YTO in P1 & P2. The frst observation from Fig-
ure 7 is that the timeseries of the supply counts of Uber over an 
entire day is strongly correlated across weekdays and weekends 
(Pearson ′ s r ≥ 0.76) but is weakly correlated between weekdays 
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and weekends (Pearson ′ s r ≤ 0.59). This indicates that the time-
series of supply of ridesharing services appear to be diferent in 
the two parts of the week, both in P1 & P2 (the ofcial weekend in 
DXB is Friday and Saturday). We also observe a strong correlation 
in the timeseries of supply within weekdays and weekends for all 
of the other service-city instances. We do not present the other 
services in Figure 7 because of the space limitation. We do not 
observe a negative correlation between the timeseries of supply for 
any service-city instance on diferent days of the week. A negative 
correlation indicates that we can observe a local maximum and 
local minimum supply count on two diferent days of the week at 
the same time of the day. Finally, the correlation coefcient between 
the supply of presented services across weekends and weekdays 
is higher in P2 than P1 because we do not observe a signifcant 
increase in the supply of services in the morning rush hours dur-
ing weekdays in P2, possibly due to the closure of workplaces and 
colleges amid COVID-19. 

6.1.2 Supply Over Time of the Day. Figure 8 shows the average 
number of vehicles per square mile of the observable regions of the 
available services that we observe in 24 hours on every day of the 
week in CPT, DXB, and YTO in P1 & P2. During P1, we observe 
the diurnal patterns during weekdays in the supply of ridesharing 
services in all the presented cities. The supply count increases at 
around 8 AM and decreases from midnight to 6 AM. If we compare 
the days of the week, we can see that there are two local peaks of 
supply count on weekdays, whereas, on weekends, there is only 
one per day, typically around 9 PM. 

The evening supply count peaks of ridesharing services during 
weekdays in LDN, MEL, and MEX are signifcantly higher (∼1.3X) 
than the morning supply count peaks of available services (fg-
ures not shown due to space limitation). We hypothesize that the 
well-pronounced dips between the two supply count peaks during 
weekdays in YTO are observed because of the business and school 
hours during weekdays as the blanketed region in YTO includes a 
university and some public ofces. These observations show that 
the supply patterns of ridesharing services evolve diferently during 
the day in diferent cities, and the fnding regarding the supply of 
ridesharing services in one region cannot help model the supply 
patterns in other areas. 

During P2, Figure 8 shows a signifcantly lower supply of rideshar-
ing services. Overall, we observe 54% fewer ridesharing vehicles in 
P2 as compared to P1. Although P1 & P2 are conducted in diferent 
months and weather conditions, a few related articles that evalu-
ated the impact of weather conditions on the supply and utilization 
of ridesharing suggest that weather does not signifcantly afect the 
ridership of ridesharing services [17, 45]. Our observations, coupled 
with the previous fndings, render the pandemic a probable cause 
for the decrease in the supply of ridesharing services. 

The services being afected most in P2 regarding supply counts 
are Uber-YTO, Ola-DEL, and Taxify-CPT. We record 60% fewer 
vehicles of these services in P2 than P1. We see the distinguishable 
morning and evening supply peaks of ridesharing services during 
pandemic weekdays in just four out of nine cities (YTO, DEL, MEX, 
and PAR). In two out of the nine experiment cities (NYC and MEL), 
we notice only one supply peak of ridesharing services per day at 
11 AM in NYC and 8 PM in MEL. Except for the services in NYC, we 
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Figure 8. The average number of observed cars of available 
ridesharing services within a square mile region in CPT, 
DXB, and YTO (shaded areas represent the weekends) in P1 
& P2 

fnd the evening supply count of available services between 6 PM -
9 PM to be 1.31x higher than the morning supply count between 8 
AM - 11 AM. Regarding the supply of services during weekends of 
P2, unlike P1, we do not fnd the supply to be noticeably lower on 
weekends than weekdays, except for services in NYC and MEL. 

In summary, we see a signifcant shift in the supply count peaks 
of service-city instances during weekdays and weekends in the 
pandemic compared to P1. We also observe that the supply of 
ridesharing services in P2 is almost a half of P1. Our observations 
indicate that the supply of ridesharing services is time-sensitive, 
and the fndings of related studies, conducted at one point of time, 
may not necessarily represent the future usage of these services. 

6.1.3 The Average Supply of Ridesharing Services. This section ana-
lyzes the expected number of vehicles of each service-city instance 
that we can observe within an hourly interval. For this, we compute 
the daily timeseries of supply by counting all the unique vehicles 
observed during each 60-minute interval of a day for each day of 
collected data. We fnd that the correlation between the timeseries 
of hourly supply is moderate to strong for each service-city instance 
for the same day of the week, with Pearson ′ s r > 0.69 in P1 and 
r > 0.73 in P2. In other words, we observe an almost equal number 
of vehicles of each service-city instance in the corresponding hourly 
intervals on the same day of the week. 

In both P1 & P2, the supply of Gett service in London is strongly 
correlated in an hourly interval (r ≥ 0.82). Gett is also a metered 
taxi service [48] and may have supply regulations to make the 
service available in a uniform fashion across the time of the days. 
This efect was also mentioned in a previous study [25], in which 
the supply for taxi services maintained a similar pattern across the 
time of the days and exhibited less variance throughout the day. 

The numbers of economic category vehicles that we observe 
per square mile in all the hourly intervals of P1 & P2 for each 
service-city instance are presented in Figure 9. We observe that the 
combined supply of Uber in all the experiment cities outnumbers 
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the combined supply of other services in our experiment with a 1.8 
to 1 ratio of vehicles in P1 and 1.5 to 1 ratio of vehicles in P2. In 
contrast to a previous work [25] that reported the supply of Uber 
to be 2.3x times greater than the supply of Lyft in NYC in 2018, we 
fnd the supply of Uber to be almost 1.12x greater than the supply 
of Lyft in NYC in P1. The diference between the supply of Uber 
and Lyft in NYC is almost negligible in P2. 

During COVID-19, we observe 58% fewer vehicles of Uber than 
before the pandemic. Interestingly, in DXB, NYC, and YTO, we do 
not see Uber as the service with the maximum supply anymore 
compared to the contemporary services in each city. As compared 
to P1, overall, we record 54% fewer ridesharing vehicles in P2 with 
the maximum 67% drop in the supply of Uber in LDN. A potential 
reason for this observation is that British drivers fled a lawsuit 
pursuing to be classifed as employed workers of Uber in P2, which 
in turn caused a decrease in the number of drivers for Uber. Further, 
we observe the maximum number of ridesharing vehicles (in an 
hourly interval within a square mile region) in NYC and YTO in P1 
& P2. We observe the least number of unique ridesharing vehicles 
in an hourly interval in DXB during P1 and LDN during P2. 

In an ofcial Uber report [35], it is mentioned that the majority 
of the Uber drivers stay active on the Uber app for less than 2 hours 
a day. In this case, drivers will want to know the peak supply hours 
of ridesharing services to avoid competition while they are on the 
road. Although the information of peak supply hours of the services 
is not public, using the supply data, we examine the hours of the day 
in which we observe the maximum number of ridesharing vehicles 
in experiment cities. The top shaded parts of Figure 9 represent 
the most frequently repeated two Peak Hours of supply for every 
service-city instance during weekdays and weekends of P1 & P2. 
Green and red markers highlight the supply counts during the 
peak hours of weekdays and weekends, respectively. We observe 
the majority (60%) of presented peak supply hours of ridesharing 
services during weekdays between 8 AM - 12 PM in P1. Due to low 
supply during the mornings of weekdays in P2, we observe only 
30% of the supply peak hours during the same interval. Regarding 
weekends in our experiment, almost 62% of the supply peak hours 
are observed between 8 PM - 1 AM in P1, and 65% of them are 
recorded between 3 PM - 7 PM in P2. On average, we fnd the 
supply of ridesharing services during the peak hours of weekdays 
to be 1.13x higher than the supply during weekends peak hours in 
P1, except for Uber in MEL. Unlike P1, we observe that the supply 
of ridesharing services is almost equal during the peak hours of 
weekdays and weekends in P2. In summary, we can see Uber losing 
its status as the most popular ridesharing service in terms of supply 
count in DXB, NYC, and YTO in P2. 

Finally, we investigate whether we observe a similar number of 
ridesharing vehicles across time of the day for the same day of the 
week at a particular location (referred to as spatial correlation). The 
examination of spatial correlation of supply of services across time 
can help us in predicting the supply hotspots in experiment cities. 
For each service-city instance, we start by dividing the experiment 
region into a grid of multiple 200 f eet2 blocks. Then, we create 
the supply timeseries for every block by recording the number of 
observed unique vehicles in that block during each 60-minute inter-
val for every day of data collection. Last, we compute the Pearson 
correlation coefcient between the timeseries of every block for 
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Figure 9. Number of economic category cars per mile2 for 
all the service-city instances in hourly intervals. Green and 
brown markers represent supply in weekdays (WK) and 
weekends (WE) peak supply hours. Top shaded panels rep-
resent the most repeated peak hours in weekdays and week-
ends in P1 & P2. 

the same days of the week in P1 & P2. We fnd the spatial correla-
tion of service-city instances extremely weak, with the correlation 
coefcient r < 0.13 in P1 and r < 0.17 in P2. In other words, we 
fnd a strong positive correlation between the timeseries of supply 
counts for each service-city instance in its experiment region with 
respect to the time of the day and the day of the week. In contrast, 
we do not see a similar number of ridesharing vehicles at the same 
time for the same days of the week at a particular geolocation. 

The key takeaway of this result is that it is difcult for drivers of 
ridesharing services to know the supply in real-time, considering 
that: i) the ridesharing services do not make the real-time supply 
information public and ii) the observation, in our experiment, that 
supply hotspots of ridesharing services are not predictable. 

RMS can graphically present the supply data of ridesharing ser-
vices. It shows the real-time number of unique vehicles of rideshar-
ing services observed in diferent neighborhoods of cities. It also 
ofers REST APIs to expose the information of real-time supply in 
JSON format. 

6.2 Utilization 
This section compares the daily utilization of ridesharing services 
across time within and across diferent regions. Figure 10 presents 
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Figure 10. Utilization of ridesharing services throughout the 
week in three cities where the utilization is the number of 
economy category vehicles of available services going of-
fine per square mile 

the daily trends of utilization counts (the number of cars going 
ofine/mi2), averaged over fve-minute windows, for every day of 
the week in CPT, DXB, and YTO for P1 & P2. 

We make three key observations regarding temporal trends of 
utilization. First, excluding Taxify-CPT, we observe a strong cor-
relation coefcient (Pearson r > 0.704) between daily supply and 
utilization timeseries of studied service-city instances in both P1 
& P2. This explains why we observe local utilization peaks corre-
sponding to supply peaks of the presented services. For Taxify-CPT 
in P1, we observe its utilization peak around evenings, with only 
one local peak in daily utilization observed throughout the week. 
This suggests that the majority of Taxify passengers may prefer to 
use the city bus service in the morning as we see a local peak of 
utilization for Taxify in CPT after 7 PM six days of the week (the 
city bus service shuts down at 7 PM [13]). 

Second, in P1, we observe the utilization of ridesharing services 
to be 1.6x higher on weekend nights as compared to weekday nights 
(8 PM - 12 AM). We observe the maximum utilization during the 
evenings (6 PM - 10 PM) of the frst day of the weekend in eight 
out of the nine experiment cities (except in DXB). In P2, we do not 
observe a signifcant increase in the utilization during weekend 
nights compared to weekday nights, probably because of country-
wide lock-down orders since early 2020. 

Third, the utilization patterns of ridesharing services in the ex-
periment cities during both weekdays and weekends in P1 are not 
similar to those in P2. For example, during weekdays in fve out of 
the nine cities (i.e., CPT, DEL, DXB, MEL, and NYC), the utilization 
of available services is observed to be 11% higher in the morning 
rush hours as compared to the evening rush hours in P1. While 
in P2, we fnd the utilization of available services higher during 
the morning rush hours than the evening rush on weekdays in 
just NYC and YTO. As another example, in P1, the average utiliza-
tion count of weekdays is ∼16% higher than the average utilization 
count of weekends in seven out of nine cities except for MEX and 
NYC. Whereas in P2, we observe that the average utilization count 
of ridesharing services is only 3-5% higher during weekdays than 
weekends in the experiment cities, except for CPT and DEL. We 
observe a little higher weekend utilization of ridesharing services 
in CPT and DEL than their weekday utilization. 

In summary, we observe 39% fewer inferred trips in our utiliza-
tion datasets in P2 than P1. Unlike P1, the diurnal patterns in the 
utilization of ridesharing services are not signifcantly evident in 
P2 because of the low supply and utilization of such services during 
the pandemic. 

Next, we study the average hourly utilization percentage (AHU%) 
of available vehicles of the ridesharing services in our experiment. 
We examine the utilization% (util ization × 100) of all of the service-supply
city instances in every one-hour interval of P1 & P2. As a result 
of 28 days of data collection in each phase, we have 672 hourly 
utilization percentage values for available service-city instances in 
P1 & P2, respectively. Figure 11 shows the values of the AHU% of 
ridesharing services in the experiment cities in P1 & P2. Overall, we 
see 1.33x higher AHU% of ridesharing services in P2 (∼28.1%±8%) 
compared to P1 (∼21.7%±5%). In both phases of our experiment, 
we consistently observe the AHU% of ridesharing services in DXB 
and MEX to be the maximum and minimum, respectively, among 
the experiment cities. Regarding the services that are present in 
multiple cities, we fnd the AHU% of Uber, across all available cities, 
to be the highest as 27%. Interestingly, we see Shebah in MEL to 
exhibit the least AHU% of 12% in P1, but the second-highest AHU% 
of 36% in P2. Excluding Taxify in PAR and CPT, we do not fnd any 
service-city instance to exhibit lower AHU% of available ridesharing 
vehicles in P2 compared to P1. 

In summary, we observe a close competition of regional rideshar-
ing services in the AHU% with Uber, i.e., we see Careem-DXB, 
Gett-LDN, Shebah-MEL, Cabify-MEX, and Lyft-YTO to have com-
parable or even better AHU% than Uber in the respective cities. 
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6.3 Idle Time and Idle Distance 
To fnd the time spent and distance traveled by the utilized vehicles 
(aka, Idle time and Idle distance, respectively) of ridesharing services 
before going ofine, RMS records the geolocation of each utilized 
vehicle on every epoch from its frst appearance until it goes ofine. 

Figure 12 shows the heatmaps of the idle distances and their 
corresponding idle times for the utilized ridesharing vehicles for all 
service-city instances in P1 & P2. The percentages in the red, green, 
blue, and black windows along Y-axes show the fraction of utilized 
vehicles observed with idle time between 0 - 5, 5 - 10, 10 - 15, and 15 
- 20 minutes, respectively. The same windows along X-axes show 
the fraction of utilized vehicles observed with the idle distance 
between 0 - 1, 1 - 2, 2 - 3, and 3 - 4 miles, respectively. Crediting to 
the high demand of available vehicles in P2, we fnd the average 
idle time and distance of ridesharing services of P2 (7 minutes and 
0.88 miles) to be lower than that of P1 (9 minutes and 1.77 miles). 
We fnd that, on average, the drivers of services in YTO wait for the 
shortest time (∼5 minutes) compared to other service-city instances 
to get the ride requests. In contrast, the maximum average idle time 
of the ridesharing vehicles is observed in MEX as 12 minutes in P1 
& P2. 

Some interesting observations in Figure 12 are: i) the percentage 
of vehicles that traveled the idle distance of ≥2 miles is <25% in 
P1 and <10% in P2, which explains why we observe asymmetrical 
heatmaps of idle distances in both phases; ii) we observe that the 
percentages of vehicles that were idle for 15 to 20 minutes in P1 
& P2 are similar but vary signifcantly in other windows of idle 
time; and iii) the distribution of the percentage of utilized vehicles 
with respect to the amount of idle distance in P1 & P2 is similar 
to a concave-up parabola. In other words, in our experiment, the 
percentage of the utilized vehicles decreases exponentially with an 
increase in the idle distance value. 

Presenting the real-time utilization hotspots, average idle time, 
and idle distance can help the drivers of ridesharing services receive 
ride requests faster and be aware of the distance they might have to 
travel to get the rides. To serve this purpose, RMS provides GUI and 
respective REST APIs to present the real-time high-demand zones, 
the average idle time, and the average idle distance of available 
ridesharing services, which has been explained in §5. 

6.4 Surge Analysis 
Ridesharing services increase trip prices using surge multipliers, in 
the form of 1.X, to match the supply of drivers to the utilization of 
riders at any given time. The value of a surge multiplier can increase 
or go back to 1 depending on the values of supply and utilization 
during the surge. In our experiment, we observe eight services in P1 
and seven services in P2 use surge multipliers. Ridesharing services 
in our experiment employ dynamic surge pricing algorithms, in 
which the surge multiplier value and time of the day of the surge 
are not pre-determined, except for Shebah in MEL, which applies a 
constant surge multiplier of 1.1x daily from 6 am to 8 am and 5 pm 
to 11 pm (both in P1 & P2). Also, we do not see Lyft in NYC and 
YTO to apply surge during COVID-19. In this section, we study the 
surge frequency for available service-city instances, attributes of 
surge instances (lifespans and radii), and evaluate surge multipliers’ 
efect on ridesharing services’ availability attributes. 
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and PAR. 

6.4.1 Surge Frequency. Considering the space limitation, in Figure 
13, we present the CDF of surge multipliers of available services in 
two cities with the highest surge frequencies in our experiment, i.e., 
DEL and PAR. The results of surge frequency distribution are based 
on the responses of 20 million web requests for each service-city 
instance in each data collection phase. 

We make three key observations regarding surge frequency dis-
tribution in our experiment. First, we see a similar distribution of 
surge multipliers in most of the ridesharing services, i.e., a stair-
case pattern in the distribution of surge multipliers with gradually 
decreasing height of each step in most of the service-city instances 
(except for Ola in DEL and Cabify in MEX, for which we received 
the value of surge multipliers in the form of continuous foating-
point numbers). This observation signifes that the smallest surge 
multiplier value greater than 1 is repeated the most in our experi-
ment. Second, the frequency of surge multiplier >1 is 5x more in P2 
than P1. We notice the value of surge multiplier >1 for 2.5% of total 
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Figure 14. CDF of surge lifespan of services in CPT and PAR 

surge web requests in P1 and 12.33% in P2. This observation is not 
surprising considering that we recorded lower supply and higher 
utilization of available vehicles in P2 than P1. Third, we observe that 
cities in our experiment have drastically diferent surge characteris-
tics across the data collection phases. We notice the average surge 
multiplier values as 1.33x in P1 and 1.41x in P2. Regarding the surge 
frequency in diferent cities, we fnd that the services in PAR and 
DEL surge most frequently both in P1 (7.3%) and P2 (22%). The city 
with the minimum surge frequency in our collected dataset is MEL 
in P1 and YTO in P2. Overall, we observe an increased value of the 
average surge multiplier and surge frequency in P2 in most of the 
cities, except for YTO, DXB, and LDN, where the surge frequency 
of available services is ≤3%. 

6.4.2 Surge Lifespan and Surge Radius. To study the lifespan of 
surges in our dataset, we record the continuous length of time for 
which the multiplier is >1. 

Figure 14 shows the distribution of lifespan of surge instances 
for services in CPT and PAR, the cities with the maximum expected 
surge lifespan, in P1 & P2. For this result, we consider the surge 
instances with a maximum lifespan of 25 minutes. 94% of the total 
surge instances in our dataset last for less than 25 minutes. We 
observe that the surge lifespan distribution of most of the service-
city instances is similar to a concave down function, i.e., the surge 
instances with a longer lifespan (>15 minutes) are rare in our exper-
iment, except for Cabify in MEX and Taxify in CPT, MEL, MEX, and 
PAR in P1. We see a stair-case pattern in the lifespan of the surge 
instances for the mentioned services, with the minimum lifespan to 
be fve minutes in P1. This shows that one could expect the surge 
multiplier value to update or end fve minutes from the start of the 
surge for these two services in P1. 

We see that the percentage of surge instances with a lifespan 
of ≤5 minutes is almost doubled in P2 compared to P1. In P1, 1/3 
of the surge instances (with at least 45% in CPT, 35% in DEL, 53% 
in DXB, 18% in LDN, 33% in MEL, 25% in MEX, 35% in NYC, 33% 
in PAR, and 25% in YTO) end within fve minutes for all available 
ridesharing services in the experiment cities. In P2, 2/3 of the surge 
instances end within the same time window (with at least 63% in 
CPT, 65% in DEL, 85% in DXB, 78% in LDN, 87% in MEL, 66% in 
MEX, 31% in NYC, 64% in PAR, and 78% in YTO). Regarding the 
service-city instance with the minimum and maximum expected 
lifespan of the surge, in P1, we fnd Lyft-NYC to have the minimum 

Figure 15. Distance (in miles) to be travelled to reduce the 
surge multiplier values of services in DEL and PAR 

expected surge lifespan of three minutes and Cabify-MEX to have 
the maximum of 11 minutes. In P2, we observe services in DXB to 
have the minimum expected surge lifespan of two minutes, while 
Heetch-PAR exhibits a maximum of nine minutes. 

We also observe that the lifespans of surges for each service-
city instance are strongly spatiotemporally correlated in each data 
collection phase. In other words, the lifespan of a surge instance at 
a particular geolocation in a weekday or weekend, within any 15-
minute interval of a day, will be close to the average of the lifespans 
of surge instances that were observed at the same geolocation in 
the last four weeks within the respective 15-minute interval of 
weekdays or weekends. 

Next, we compute the radius of each surge instance in our dataset. 
For a surge instance at a source point (SI ), we record the surge 
multiplier values at every source point within the distance ≤ three 
miles from SI to fnd the nearest non-surging location. We present 
the surge radii distribution of service in DEL and PAR (cities with 
service that exhibit the smallest and largest average value of surge 
radius) for P1 & P2 in Figure 15. 

Overall, we do not fnd any signifcant diference in the surge 
radius of service-city instances in P1 & P2. Nor do we fnd any 
evidence for radii of surge instances to be pre-determined for any 
service-city instances in P1 & P2, except for Shebah-MEL. Further, 
we fnd that the surge multiplier value reduces by at least 50% if we 
move 0.5 miles away from the surging location. We also observe 
that for a half of the surge instances in our experiment, the nearest 
non-surging location is 0.84 miles from the surging location. Last, 
less than 1.5 miles of distance is expected to be traveled to avoid 
100% of the surge instances for the available services in two out of 
the nine experiment cities, i.e., DEL and YTO in our experiment. 

The three major takeaways of the results related to surge lifespan 
and radius are: i) the ridesharing services update their surge algo-
rithms regularly because we do not see the same staircase pattern in 
the lifespan of surge instances in P2 as compared to P1 and the pre-
vious publication [7]; ii) except for a few services, like Heetch-PAR 
and Cabify-MEX, the majority of surge instances in our experiment 
are short-lived, and we can avoid those surge instances by waiting 
for a few minutes, as 50% of the total surge instances ended in ≤ 8 
minutes in P1 and ≤ 3 minutes in P2; and iii) ridesharing customers 
can also walk for 8-10 minutes in the “right” direction to get the 
surge multiplier frequency halved. 
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Based on the observations that the lifespans of surge instances 
are spatiotemporally correlated and walking in the “right” direction 
can help in avoiding the surge, RMS presents the real-time surge 
multiplier value, expected life of surge (based on the history of 
surge lifespans), and the closest non-surging location for available 
services. More details have been presented in §5. 

6.4.3 Surge Impact on Availability. Ridesharing services claim that 
surge causes increased supply and reduced utilization. To verify this 
claim, we examine the supply and utilization of each ridesharing 
service in two intervals of time for each surge instance. For every 
data collection source point of every service-city instance with 
surge multiplier value > 1, we fnd the four bounding coordinates 
(upper left, upper right, lower left, and lower right) with surge 
multiplier values equal to 1. Next, let’s say a surge instance starts 
at T0 and ends at TN where T0 and TN are minutes of the day 
from 0 to 1439, and SurдeLenдth = TN - T0 + 1 is the total life of 
surge in minutes, where T0 - SurдeLenдth ≥ 0. Then, we calculate 
the total observed number of vehicles (supply) and the vehicles 
that went ofine (utilization) within the four bounding coordinates 
of the surged area in two-time windows of Be f oreSur дe = T0 -
SurдeLenдth to T0 and DurinдSur дe = T0 to TN . 

Our surge impact analysis validates the claim that most surge 
instances of ridesharing services can help increase supply and re-
duce utilization in the surging areas. We observe a 9% increase in 
supply volume of ridesharing services in 77% of the total recorded 
surge instances. However, out of the total vehicles that moved in 
the surging areas to increase the supply, only 9% in P1 and 6% in 
P2 are new vehicles with the frst epoch recorded after the start of 
the surge instances. It implies that during the surge instances, the 
existing supply of ridesharing services gets redistributed geograph-
ically to the places where surge multipliers are greater than 1. That 
may result in long wait times and less supply in the areas where 
the drivers are moving away. 

We also observe that the majority of the surge instances result 
in decreased utilization in experiment cities, except for DXB, where 
we see 59% of the surge instances to be inefective in reducing the 
utilization. On the other hand, ridesharing services that are the 
most responsive to the surge are Uber-DEL, Ola-DEL, and Heetch-
PAR, with the reduced utilization in ≥90% of the recorded surge 
instances. Overall, we observe a 5.5% decrease in the utilization 
counts of services in 71% of the total recorded surge instances. 

Last, we observe that surge instances between 6 AM - 9 AM in 
P1 and 1 PM - 3 PM in P2 are the most efective in increasing the 
supply of ridesharing services. However, the most efective surge 
instances, in which we observe the decrease in utilization counts, 
are between 5 AM - 7 AM in P1 and between 4 AM - 5 AM in P2. 
The least efective time window for decreased utilization is 8 PM -
10 PM in both phases, with only 44% of surge instances resulting 
in decreased utilization. 

To summarize: i) although it appears that surge serves its pur-
pose, it does not help increase the total supply of the ridesharing 
service; instead, it redistributes the existing supply geographically 
and ii) being at the surging location between 8 PM - 10 PM can be 
more benefcial for the drivers of ridesharing services. We do not 
observe a drop in utilization of ridesharing services for the majority 
of the surge instances that occurred during that period. 

7 Discussion 
This section summarizes the implications of this work for quantita-
tive and qualitative studies related to ridesharing services. 

For Quantitative Studies: Quantitative ridesharing studies mea-
sure diferent aspects of availability and surge pricing and combine 
them with other demographic and transportation datasets (e.g., 
median household income, density population, average paying ca-
pacity, fuel prices, and road infrastructure) to achieve a variety of 
diferent objectives. Examples of such objectives include quanti-
fying the impact of the pandemics on the usage of such services, 
developing spatiotemporal supply, utilization, and surge prediction 
models, guiding regulators on making informed policies on reduc-
ing carbon emissions, avoiding trafc congestion, and reducing the 
pricing bias of ridesharing services. 

As a use-case of the utility of RMS, we use the data collected and 
analyzed through it in the pre and during the COVID-19 periods 
to quantify the impact of COVID-19 on the availability and surge 
pricing of ridesharing services. Observations from this use-case 
measurement study reveal that during COVID-19, the supply of 
ridesharing services decreased by 54%, utilization of available vehi-
cles increased by 6%, and surge frequency of services increased by 
5×. Our observations further reveal that during the pandemic, Uber 
lost its popularity of having the maximum supply in three major 
cities: New York, Toronto, and Dubai. 

Although we do not measure the impact of all attributes specifc 
to each region that may afect the usage of ridesharing services, 
future work can leverage RMS to collect real-time data of the avail-
ability and surge pricing to investigate the correlation of diferent 
factors (e.g., weather, national holidays, and public transport) with 
the usage of ridesharing services. 

For Qualitative Studies: HCI researchers can use RMS to eval-
uate the outcomes of related qualitative studies (e.g., [11, 27]) 
that suggest new ridesharing application designs for specifc users 
(e.g., the groups with low income, low digital literacy, and physi-
cal disabilities) by comparing the availability and surge pricing of 
ridesharing services in that region before and after introducing the 
interventions. These collaborations will help the HCI community 
understand if the new interventions prove to assist in bringing pos-
itive changes in the usage of ridesharing services, e.g., increasing 
the utilization or reducing the idle times and distance. 

Some HCI researchers work on diagnosing socioeconomic, gen-
der, racial, and ethical biases in the provisioning or usage of commer-
cial applications using applications’ usage data (e.g., [23, 33, 37, 47]). 
However, the unavailability of the usage data of ridesharing services 
makes it impossible to further the understanding of the provision 
and usages biases of these services in diferent neighborhoods. RMS 
can help remove the data unavailability barrier in analyzing the 
availability and surge pricing biases of ridesharing services. 

8 Limitations and Future Work 
This work has four limitations and open problems arising from 
making the mobility data of ridesharing services public, which we 
also see as opportunities for future work. 

The frst limitation is that we choose a small geographical area 
in each experiment city. Web servers of ridesharing services use the 
rate-limiting mechanism to restrict users from making too many 
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web requests within a short period. Web servers identify each user 
through a unique OAuth-based authentication token added by the 
client in request headers. Once web servers activate rate-limiting, 
users receive HTTP 429 (too Many Requests response status code) 
with Retry-After header value (in seconds) indicating how long 
to wait before making a new request. We were able to execute 
at the maximum six web requests within one second using the 
same authentication token. In simpler words, we can use the same 
user account token to get nearby vehicles or surge values from 
six diferent geolocations concurrently in our experiment without 
experiencing rate-limiting from the web servers of ridesharing ser-
vices. To avoid HTTP 429 errors while executing several nearby 
vehicles and surge web requests, RMS needs several unique user 
authentication tokens for each ridesharing service involved in our 
experiment. As per the standard registration process on social ap-
plications, we needed unique phone numbers to sign-up/register 
on ridesharing services. We opted to use an online messaging ser-
vice [40] to receive OTPs (One Time Passwords) on unique phone 
numbers while signing up for ridesharing services. We used a total 
of 180 phone numbers for our experiment because of budget con-
straints. As a result of just 180 unique user authentication tokens of 
each ridesharing service involved in this experiment, RMS can only 
cover a small part of each city’s downtown with 50 data collection 
source points for each service-city instance. Although RMS is de-
ployed only in a limited region of nine diferent cities, with enough 
user authentication tokens and computational resources, RMS can 
track the supply, utilization, and surge pricing of ridesharing ser-
vices in diferent neighborhoods of any city without modifying any 
presented algorithms in this paper. 

Second, the utilization computed by RMS using the method ex-
plained in §4.2 may represent the upper bound of the actual utiliza-
tion of ridesharing services since no ridesharing service provides 
the information about the real utilization. Some vehicles may go 
ofine not to pick up passengers but because the drivers are done 
for the time being and turn of the ridesharing applications, and 
RMS can consider such vehicles as utilized vehicles. 

Third, RMS presents the availability and surge pricing of just 
economic category vehicles of ridesharing services. Comparative 
analysis of all the vehicle categories of ridesharing can provide 
further insight into the usage of ridesharing services. 

Fourth, we are currently hosting RMS on a shared web server and 
using our institute’s computational resources and internet connec-
tions to collect and analyze the availability and surge pricing data. 
To keep the upload bandwidth utilization of the shared web server 
low, we set RMS update frequency to be once every 15 minutes. With 
more computational resources and allocated internet bandwidth, 
we can speed up the update frequency of RMS without modifying 
the presented algorithms. 

In the future, we plan to undertake three tasks: frst, we will study 
the spatiotemporal trends of availability and surge pricing trends of 
multiple ridesharing services in diferent neighborhoods of the same 
cities (e.g., downtown and suburban areas) to compare the provision 
and usage of multiple vehicle categories in those regions; second, 
we plan to collaborate with HCI researchers (e.g., [11, 27]) and 
use RMS to evaluate the impact of qualitative studies that suggest 
new ridesharing application designs for specifc users (e.g., groups 
with low income, low digital literacy, and physical disabilities) by 

comparing the availability and surge pricing of ridesharing services 
in that region before and after introducing the interventions; and 
third, we will also work on improving the user experience of RMS 
for diferent types of users by conducting usability workshops with 
ridesharing users. We will be focusing primarily on understanding 
the expectations of non-expert users from an algorithmic platform 
that will guide the design improvements of RMS. 

9 Ethical Considerations 
As this work involves data collection from the ofcial web servers of 
ridesharing services, we have been careful to collect data ethically. 
First, we do not retain any personal information about the driver or 
passengers of ridesharing services, nor did we book any ride for our 
experiment. Second, we keep the impact of this experiment to be 
negligible on the ridesharing services’ infrastructure; RMS scripts act 
as a few actual instances of the respective applications considering. 
The sum of downloads of all the discussed ridesharing services 
on Android Google Play, and Apple App Store is in hundreds of 
millions. Next, we also obtained approval for this study from the 
Institutional Review Board of our institute. Last, we thoroughly read 
the Terms of Conditions (ToC) documents of studied ridesharing 
services to ensure that we do not violate any of the terms while 
collecting the data. We do not fnd any term that may prevent us 
from scraping the data from their applications. 

10 Conclusions 
The resistance of ridesharing services in making the information 
of their availability (supply, utilization, idle time, and idle distance) 
and surge pricing public creates a barrier for researchers to investi-
gate the usage of these services across diferent regions. This paper 
presents Ridesharing Measurement Suite (RMS), a data feed tool that 
removes entry barriers for analyzing ridesharing services’ avail-
ability and surge pricing. RMS continuously crawls and analyzes 
the web trafc of smartphone applications of ridesharing services. 
It exposes real-time data on the availability and surges pricing of 
ridesharing services through a graphical user interface and a set of 
public APIs. 

Using RMS, various stakeholders of ridesharing services can ac-
quire real-time information on the availability and surge pricing of 
ridesharing services in diferent regions. It can also simplify the data 
collection process for future multidisciplinary ridesharing research 
studies. To highlight the utility of RMS, we use RMS to conduct a 
large-scale measurement study on the availability and surge pric-
ing by collecting data for 10 popular ridesharing services in nine 
countries for eight weeks in two time periods: before COVID-19 
and during COVID-19. Using the data collected and analyzed by 
RMS, we make several important observations regarding ridesharing 
services’ availability and surge pricing, which are left unnoticed in 
the related literature. We believe that this work will further spark 
motivation in the research community to explore the dynamics of 
ridesharing services in diferent regions. 
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A Terminology 

Following are the defnitions of terms used in this paper. 

Term Defnition 

Gig Economy 
A labour market characterized by the prevalence of short-term contracts or freelance 
work as opposed to permanent jobs. 

Supply The number of vehicles driving for a ridesharing service over any given period. 

Utilization The number of vehicles currently in supply that passengers book over the given period. 

Hourly Utilization Percentage 
(HU%) Utilization percentage in an hour. 

Idle Time and Idle Distance 
The time spent and distance traveled by the ridesharing service drivers while looking 
for passengers. 

Availability 
The term availability in this paper encompasses three aspects of ridesharing services, 
which include: i) supply; ii) utilization; and iii) idle time and idle distance. 

Surge 
Ridesharing services dynamically increase the prices of their trips during times of low 
supply or excessive utilization. This concept of a dynamic increase in trip fares because 
of supply and utilization imbalance is referred to as surge (dynamic) pricing. 

Surge Multiplier Surge multiplier value, i.e., the foating-point value of the surge intensity variable (in 
the form of 1.x), multiplied with the base trip fare to increase the trip price. 

Surge Instance 
The surge instance represents the continuous-time window in which the surge multiplier 
value increases from 1.0 and drops back to 1.0. 

Surge Frequency Surge frequency represents the daily number of surge instances. 

Surge Lifespan Surge lifespan represents the length of surge instances in minutes. 

Nearby Vehicles Vehicles shown on a map in a ridesharing application close to users are referred to as 
nearby vehicles in this paper. 

Source Points 
Fifty diferent geolocations in a city from where RMS collects the data of the availability 
and surge pricing of ridesharing applications. Each data collection geolocation is referred 
to as a source point in this paper. 

Blanketed Region 
We refer to the data collection region in each city, where source points are installed, as 
the blanketed region of that city. 

Observable Region 
The observable region of any ridesharing service within a given time interval represents 
a polygon with its area as the product of distances between the horizontally and vertically 
farthest observed vehicles within that period. 

Service-City Instances A specifc ridesharing service operating in a particular city, e.g., Uber-Melbourne. 

RMS 
Ridesharing Measurement Suite: The tool presented in this paper which continuously 
collects, analyzes, and publishes the information of availability and surge pricing of 
ridesharing applications. 

Working Service-City 
Instances Set of RMS 

A set that represents all the service-city instances analyzed by RMS. 
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